
CSCI 678: Theoretical Machine Learning
Homework 2

Fall 2024, Instructor: Haipeng Luo

This homework is due on 10/13, 11:59pm. See course website for more instructions on finishing
and submitting your homework as well as the late policy. Total points: 50

1. (Pseudo-dimension and fat-shattering dimension) For a function f : [0, 1] → [−1, 1], define
its total variation V (f) as

V (f) = sup
1≤m∈Z+

0=x0<x1<···<xm=1

m∑
j=1

|f(xj)− f(xj−1)|,

which, intuitively, measures how much the function varies on the interval [0, 1]. Now, consider
the function class F = {f : [0, 1] → [−1, 1] | V (f) ≤ B} for some constant B > 0.

(a) (4pts) Prove that the Pseudo-dimension of F is infinity.

Proof. For any n, consider a sequence of n pairs (x1, y1), . . . , (xn, yn) ∈ [0, 1] × [−1, 1]
with xt = t/n and yt = 0 for all t. Then, for any labeling s1, . . . , sn ∈ {−1,+1}, consider
the piece-wise constant function f (with at most n pieces) such that

f(x) =
Bst
2n

, ∀x ∈
(
t− 1

n
,
t

n

]
,

and additionally f(0) = f(1/n). Then, by construction, sign(f(xt) − yt) = st trivially
holds for all t = 1, . . . , n. Moreover, the total variation of f is at most B

n × (n − 1) < B,
since every two consecutive pieces of the function contribute B

n variation. This shows f ∈ F
and thus Pdim(F) = ∞.



(b) Follow the two steps below to prove that the fat-shattering dimension of F at scale α ≤ 1 is

fat(F , α) = 1 +

⌊
B

α

⌋
.

i. (4pts) For n ≤ 1 + B
α , construct a sequence of n pairs (x1, y1), . . . , (xn, yn) ∈

[0, 1] × [−1, 1], such that for any labeling s1, . . . , sn ∈ {−1,+1}, there exists f ∈ F
with st(f(xt)− yt) ≥ α/2 for all t = 1, . . . , n. (This shows fat(F , α) ≥ 1 +

⌊
B
α

⌋
.)

Proof. The construction is similar to the last question: consider xt = t/n and yt = 0
for all t; for any labeling s1, . . . , sn ∈ {−1,+1}, consider the piece-wise constant
function f (with at most n pieces) such that

f(x) =
αst
2

, ∀x ∈
(
t− 1

n
,
t

n

]
,

and additionally f(0) = f(1/n). Then, by construction we have for any t:

st(f(xt)− yt) = stf(xt) =
αs2t
2

=
α

2
.

Moreover, the total variation of f is at most α× (n− 1) ≤ B, since every two consec-
utive pieces of the function contribute α variation, which shows f ∈ F .

ii. (5pts) For any n > 1+ B
α and any sequence of n pairs (x1, y1), . . . , (xn, yn) ∈ [0, 1]×

[−1, 1] with x1 < x2 < · · · < xn, show that if f : [0, 1] → [−1, 1] is such that
st(f(xt)− yt) ≥ α/2 for all t = 1, . . . , n where

s1 = −1, s2 = +1, s3 = −1, s4 = +1, . . . ,

and g : [0, 1] → [−1, 1] is such that st(g(xt)− yt) ≥ α/2 for all t = 1, . . . , n where

s1 = +1, s2 = −1, s3 = +1, s4 = −1, . . . ,

then we must have V (f) + V (g) > 2B. (Convince yourself that this implies
fat(F , α) ≤ 1 +

⌊
B
α

⌋
.)

Proof. By the definition of total variation and the fact x1 < x2 < . . . < xn, we know
V (f) ≥

∑n−1
t=1 |f(xt)− f(xt+1)|. On the other than, by the stated condition, we have

f(xt) ≥ yt + α/2 if t is even and f(xt) ≤ yt − α/2 if t is odd. Therefore, for an odd
t, we have

|f(xt)− f(xt+1)| ≥ f(xt+1)− f(xt) ≥ yt+1 − yt + α,

and similarly, for an even t, we have

|f(xt)− f(xt+1)| ≥ f(xt)− f(xt+1) ≥ yt − yt+1 + α.

On the other hand, by the same argument, V (g) is at least
∑n−1

t=1 |g(xt) − g(xt+1)|,
and for an even t, we have

|g(xt)− g(xt+1)| ≥ g(xt+1)− g(xt) ≥ yt+1 − yt + α,

and for an odd t, we have

|g(xt)− g(xt+1)| ≥ g(xt)− g(xt+1) ≥ yt − yt+1 + α.

To sum up, for both even and odd t, the following holds:

|f(xt)− f(xt+1)|+ |g(xt)− g(xt+1)| ≥ 2α,

and thus V (f)+V (g) ≥ 2(n−1)α > 2B where the last step is due to n > 1+ B
α .
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2. (Zero-covering number and shattering) Consider a class of binary predictors F ⊂ {−1,+1}X .
The concept of zero-covering number N0(F|x) given an X -valued tree x of depth n is analo-
gous to |F|x1:n |, the cardinality of the projection of F on a dataset x1:n (in the statistical learn-
ing setting). However, there are some subtle differences between them. In particular, while
|F|x1:n

| = 2n is equivalent to x1:n being shattered by F , N0(F|x) = 2n is not equivalent to x
being shattered by F . In this problem, you will explore why this is case. (Understanding what the
questions below are asking you to do is already a good test to your understanding of the related
concepts.)

(a) (4pts) Prove that if F shatters x, then we indeed have N0(F|x) = 2n. (Recall that
N0(F|x) ≤ 2n is always true, so this is really asking you to show N0(F|x) ≥ 2n.)

Proof. By the definition of shattering, for any path ϵ ∈ {−1,+1}n, there exists a classifier,
denoted by fϵ, such that fϵ(xt(ϵ)) = ϵt for all t. Now, let V be a zero-cover of F|x. Then
for any two different paths ϵ and ϵ′ (and the corresponding fϵ and fϵ′ ), there exist v ∈ V
and v′ ∈ V such that on the corresponding path fϵ agrees with v and fϵ′ agrees with v′.
The claim is that these two trees v and v′ cannot be the same element of V . Indeed, let t
be the first index such that ϵt ̸= ϵ′t. Then we have vt(ϵ1:t−1) = f(xt(ϵ)) = ϵt ̸= ϵ′t =
f(xt(ϵ

′)) = v′
t(ϵ

′
1:t−1), but since ϵ1:t−1 and ϵ′1:t−1 are the same, we conclude that v and v′

are two different trees. Therefore, for each different path ϵ, there is a corresponding different
v ∈ V , implying that |V | ≥ 2n.

(b) (4pts) Next, prove that N0(F|x) = 2n does not necessarily mean that F shatters x.
Hint: consider a tree x with depth n being the VC-dimension of F and the leftmost path
consisting of n points that are shattered by F (in the statistical learning sense).

Proof. First, the tree x mentioned in the hint satisfies N0(F|x) = 2n. This is because F
can realize all the 2n possible labelings for the leftmost path by construction, so just to cover
this path we already need 2n different trees. However, there are many ways to construct the
rest of x to make sure that it cannot be shattered by F . For example, by simply setting the
rightmost path of this tree to have one unique element, we cannot find an f to realize the
labeling (+1,+1, · · · ,+1,−1) for this path. This completes the proof.

(c) (4pts) Finally, prove that if N0(F|x) = 2n, then there must exist a tree x′ of depth n that
is shattered by F . Hint: use Theorem 1 of Lecture 6, that is, the online analogue of Sauer’s
lemma. (Note that combining (a) and (c), we have

Ldim(F) = max

{
n : max

x of depth n
N0(F|x) = 2n

}
,

which is analogous to VCdim(F) = max {n : maxx1:n
|F|x1:n

| = 2n}.)

Proof. Let d be the Littlestone dimension of F . It suffices to prove d ≥ n, because then by
definition there must exist a tree x′ of depth n that is shattered by F . Indeed, if d < n, then
we can use the fact N0(F|x) = 2n together with the online analogue of Sauer’s lemma to
arrive at the following contradiction.

2n = N0(F|x) ≤
d∑

i=0

(
n

i

)
<

n∑
i=0

(
n

i

)
= 2n.

This finishes the proof.
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3. (Littlestone dimension) Consider X = Rd and the class

F =

{
fθ,b(x) =

{
+1, if ⟨θ, x⟩+ b = 0

−1, else

∣∣∣∣ 0 ̸= θ ∈ Rd, b ∈ R
}
.

which is a generalization of the simple class Eq. (5) in Lecture 5 from one dimension to general
dimension. In words, it classifies all the points residing in the hyperplane ⟨θ, x⟩ + b = 0 as +1,
and everything else as −1. Follow the steps below to show Ldim(F) = d.

(a) (3pts) Construct a set of d points x1, . . . , xd ∈ Rd that can be shattered by F (in the
statistical learning sense), which shows d ≤ VCdim(F) ≤ Ldim(F).

Proof. Simply let the d points be the d standard basis vectors in Rd: e1, . . . , ed. Then for any
ϵ1:n ∈ {−1,+1}n, the parameters θ = (ϵ1, . . . , ϵn) and b = −1 satisfy for all t = 1, . . . , n:
⟨θ, xt⟩+ b = θt + b = ϵt − 1 and thus fθ,b(xt) = ϵt. This completes the proof.

(b) (4pts) For d = 2, show that no tree x of depth 3 can be shattered by F . Hint: consider
different cases for the three points on the rightmost path of x: are they collinear (that is, on
the same line)? are some of them identical?

Proof. For any tree of depth 3, consider the three points on its rightmost path. If they are
not collinear, then ϵ = (+1,+1,+1) can not be realized by any classifiers in F since a line
in R2 cannot pass through 3 points that are not collinear.

If they are collinear, there are two cases. First, if the first two points are identical, then
ϵ = (+1,−1, ?) (the value of ? does not matter) cannot be realized by any f ∈ F since it
requires labeling the same point by +1 and −1 simultaneously.

On the other hand, if the first two points are distinct, then ϵ = (+1,+1,−1) cannot be
realized since the third point must be on the line that passes through the first two points,
which means that any f ∈ F that labels the first two points as +1 must label the last point
as +1 as well. To sum up, no tree of depth 3 can be shattered by F .

(c) (8pts) Generalize the idea from the last question to show that for any dimension d, no
tree of depth d + 1 can be shattered by F , which shows Ldim(F) ≤ d. Hint: a set of n
points x1, . . . , xn ∈ Rd are affinely dependent if the following n − 1 points are linearly
dependent: x1 − xn, x2 − xn, . . . , xn−1 − xn; convince yourself that two points being
affinely dependent if and only if they are identical, and three points being affinely dependent
if and only if they are collinear.

Proof. For any tree of depth d + 1, let x1, . . . , xd+1 be the points on its rightmost path. If
they are affinely independent, then no hyperplane can pass through all of them and thus no
f ∈ F can realize ϵ = (+1,+1, . . . ,+1). More formally, suppose that fθ,b predicts +1
on all these points, that is, ⟨θ, xt⟩ + b = 0 for all t. Then, we have ⟨θ, xt − xd+1⟩ = 0
for all t. Since the space {x ∈ Rd : ⟨θ, x⟩ = 0} is (d − 1)-dimensional, the d points
x1 − xd+1, x2 − xd+1, . . . , xd − xd+1 must be linearly dependent. This is a contraction to
x1:d+1 being affinely independent.

Now suppose x1:d+1 are affinely dependent. In particular, let k ≥ 1 be the smallest index
such that x1:k+1 are affinely dependent. Then we claim that no f ∈ F can realize ϵ =
(+1,+1, . . . ,−1, ?, · · · , ?) where the first −1 appears on the (k + 1)-th coordinate (the
value of ? does not matter), that is , no f ∈ F can predict +1 on x1, . . . , xk while predicting
−1 on xk+1. Indeed, suppose that θ and b are such that ⟨θ, xt⟩ + b = 0 for t = 1, . . . , k.
Since x1:k+1 are affinely dependent, there exist coefficients a1, . . . ak ∈ R, not all zero, such
that

∑k
t=1 at(xt − xk+1) = 0, or equivalently,

∑k
t=1 atxt = (

∑k
t=1 at)xk+1. Multiplying

both sides by θ and adding (
∑k

t=1 at)b to both sides shows (
∑k

t=1 at)(⟨θ, xk+1⟩+ b) = 0.
Since

∑k
t=1 at ̸= 0 (otherwise x1:k are affinely dependent already, contradicting with the

definition of k), we have ⟨θ, xk+1⟩+ b = 0, which shows that no f ∈ F can predict +1 on
x1, . . . , xk while predicting −1 on xk+1.
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4. (Lower bound for online classification) In this exercise you will prove V seq(F , n) ≥
√

d
8n

where d = Ldim(F) ≤ n. For simplicity, we will further assume that n is a multiple of d.
The construction of the environment is as follows. The labels y1, . . . , yn are i.i.d. Rademacher
random variables. To define the example x1, . . . , xn, we divide the entire n rounds evenly into d
epochs, where epoch k contains rounds n(k − 1)/d+ 1, . . . , nk/d. On the same epoch, xt stays
the same. Specifically, let ϵk = sign

(∑
t∈epoch k yt

)
be the majority vote of the true labels in

epoch k, that is,

ϵk =

{
+1, if

∑
t∈epoch k yt ≥ 0,

−1, else,

and x be a tree of depth d that is shattered by F . Then xt = xk(ϵ) for any t that belongs to
epoch k. This concludes the construction of the environment.

(a) (2pts) For any online learner, let s1, . . . , sn ∈ {−1,+1} be its sequential predictions for
x1, . . . , xn in this environment. Calculate the learner’s expected loss E [

∑n
t=1 1 {st ̸= yt}],

where the expectation is with respect to the randomness of both the learner and the
environment.

Proof. The answer is clearly n/2 since each yt is an i.i.d. Rademacher random variable and
st is independent of yt.

(b) (4pts) Calculate E [inff∈F
∑n

t=1 1 {f(xt) ̸= yt}], the expected loss of the best classifier in
F , where the randomness is with respect to the randomness of the environment.

Proof. By the construction and the definition of shattering, there exists f ∈ F such that it
correctly predicts all the majority votes ϵ1, . . . , ϵd, which also implies that it must be the
best classifier. On epoch k, the number of mistakes this optimal classifier makes is the size
of the minority, which is precisely

n
d −|

∑
t∈epoch k yt|
2 . Summing over d epochs shows

E

[
inf
f∈F

n∑
t=1

1 {f(xt) ̸= yt}

]
=

n

2
−

E
[∑d

k=1 |
∑

t∈epoch k yt|
]

2
.

(c) (4pts) Conclude the statement V seq(F , n) ≥
√

d
8n . Hint: use the Khinchine inequality that

says the expected magnitude of the sum of m i.i.d. Rademacher random variables is at least√
m/2 for any m ≥ 1.

Proof. Direct calculation shows

Reg(F , n) = E

[
n∑

t=1

1 {st ̸= yt}

]
− E

[
inf
f∈F

n∑
t=1

1 {f(xt) ̸= yt}

]

=
E
[∑d

k=1 |
∑

t∈epoch k yt|
]

2
≥

d ·
√

n
2d

2
=

√
dn/8,

where the inequality is by the Khinchine inequality. Since this holds for any learner, nor-

malizing proves V seq(F , n) ≥
√

d
8n .
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