CSCI 678: Theoretical Machine Learning
Homework 3

Fall 2024, Instructor: Haipeng Luo

This homework is due on 11/03, 11:59pm. See course website for more instructions on finishing
and submitting your homework as well as the late policy. Total points: 40

1. (Hedge) (6pts) For a finite class of binary classifier F C {—1, +1}X, under the realizable as-
sumption inf e 7 >, 1{f(x;) # y:} = 0, prove that Hedge with learning rate = 1,/2 makes
at most 4 In | F| mistakes in expectation. Hint: use Lemma 1 of Lecture 6. (Note that this is sim-
ilar to the guarantee of Halving, but achieved via a proper algorithm this time.)

Proof. Similarly to the proof of Theorem 6 of Lecture 6, to apply Lemma 1 we set K = |F]|,
rename the element of 7 by 1, ..., K, and set £;(i) = £(i, 2;), so that Hedge exactly samples ¥;
according to p; as defined in Lemma 1. The realizable assumption becomes min;« Zle 0(i%) =
0, and thus Lemma 1 states
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Since ¢;(7) is either 0 or 1, the term Zfil pe(i)03(i) is in fact equal to (p;,¢;). Therefore,
rearranging gives
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The left hand side of the above inequality is exactly the expected number of mistakes made by
Hedge, and the right hand side is 4 In | F| with the specific choice of learning rate n = 1/2, which
finishes the proof. O



2. (Perceptron and sequential fat-shattering dimension) Recall the sequential fat-shattering di-
mension sfat(F, o) defined in Lectures 6. Let X = B and F = { fy(z) = (,z) |6 € B3}. In
this exercise, you will prove sfat(F, a) < % (which is independent of d) for any o > 0, using
an indirect approach that leverages the guarantee of the Perceptron algorithm.

More specifically, suppose that x is a X'-valued tree of depth n that is a-shattered by F, with
witness y, a [—1, +1]-valued tree. Now, imagine running Perceptron in the following problem
instance in R4+

Letd' =0c R Fort=1,...,n:
* Environment reveals example z} = %(wt(yi:tfl),yt(y’l:tfl)) € Bt
* Perceptron algorithm predicts s; = sign({(z},6’)).
* Environment reveals y; = —s;, forcing Perceptron to make an update 6’ < 6" + y;x;}.

Note that the environment is valid even though it seemingly decides the label y; after seeing the
algorithm’s prediction s;, since Perceptron is a deterministic algorithm (and thus 2., and ¥}.,,
are in fact all fixed ahead of time).

(a)

(b)

(4pts) Prove that the data constructed above satisfy the y-margin assumption (Assumption
1 of Lecture 7) with p = ¢ = 2. In other words, find a specific value of v > 0 and show that

there exists #, € B4 such that y} (6, «}) > v holds forall t = 1,...,n.

Proof. Since x is a-shattered by F, there exists § € B¢ such that
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holds forall t = 1,...,n. This is equivalently to y; (0., z}) > vif welet0, = %(9, -1) e
B;H'l and v = ¢, showing that the margin assumption is satisfied with v = 7. O

(3pts) Use the guarantee of Perceptron (that is, Theorem 3 of Lecture 7) to conclude
sfat(F,a) < 15.

Proof. Since the margin assumption is satisfied with v = ¢, Theorem 3 of Lecture 7 shows
that Perceptron makes at most 1/92 = 16/a? mistakes. On the other hand, the construction
is such that Perceptron makes a mistake in every round, which must imply n < 16/a?.
Since x is an arbitrary tree c-shattered by F, this further implies sfat(F, ) < é—g. O



3. (Winnow) When the y-margin assumption holds with p = ¢ = 2, we have seen that Perceptron
makes at most 7% mistakes for an online binary classification problem. In this exercise, you will
prove a similar result when the y-margin assumption holds with p = 1 and ¢ = oo, using a
different algorithm called Winnow. To show this, we first consider the following generalization
of Perceptron, defined in terms of some link function g : R% — R<.

Algorithm 1: A generalization of Perceptron
Letd =0.Fort=1,...,n
* Receive z; and predict s; = sign({x¢, g(0))).
* Receive y; € {—1,+1}. If y; # s¢, update 6 < 0 + y;a;.

It is clear that when instantiated with g being the identity mapping g(6) = 6, Algorithm 1 is
exactly the Perceptron algorithm. Below, we will see that the Winnow algorithm is also an
instance of Algorithm 1 but with a different link function. Throughout, we assume x; € Bgo,
that is, ||z[|, < 1, forall ¢.

(a) Consider running Algorithm 1 with link function g(#) = exp(nf) and some parametern > 0
(where the exponentiation is applied coordinate-wise to the vector n6). Let’s call this the
simplified Winnow algorithm.

i.  (4pts) Find a sequence of loss vectors /1,...,¢, € [—1,4+1]¢ such that the pre-
diction of simplified Winnow s; = sign({x¢, g(#))) can be equivalently written as
sy = sign({(x¢, pt)), where p; € A(d) is a distribution such that

pe(7) o<exp< 7726 ), forall:=1,...,d.

T<t

Proof. The loss vector £; should be —1 {y; # s} ysx; (which is in [—1,41]? since
|z¢|l,, < 1). This is because at the beginning of round ¢, the vector 6 is
> st 1{yr # s+ } yr2,, and thus

50 = sign({z1, 9(0))) = sign (< j((j))» = sign((zs, pr))-
O

ii.  (8pts) Based on the reformulation of the last question, apply Lemma 1 of Lecture 6 to
show that as long as < 1, we have for any 6* € A(d):
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where M = Y"1 | 1{y; # s} is the total number of mistakes made by the simplified
Winnow algorithm.

Proof. Since n < 1 and 4;(i) € [—1,1], the condition n¢;(i) > —1 of Lemma 1 of
Lecture 6 holds. Directly applying the lemma then shows for any i* € {1,...,d},
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which means for any 6* € A(d):
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We now plug in the definition of ¢; and bound each term. First, we have
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ii.

where the inequality is because whenever 1 {y; # s;} = 1, we must have y; (p;, x1) <
0 since s; = sign((ps, ¢)). Second, we have by definition.
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Finally, since 27 (i) < 1, we have
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Combining all terms finishes the proof. O
(3pts) Consider the following assumption that is slightly stronger than the original -
margin assumption with p = 1 and ¢ = oo
there exists 0* € A(d) such that y; (8™, z;) > ~ for all ¢. (D)

Prove that under this assumption, the total number of mistakes M made by the
simplified Winnow algorithm is at most % whenn =3 < 1.

Proof. Using the assumption and continuing with the result from the last question, we
have
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Rearranging and plugging the value of 7 proves the claim. O

(b) Now consider the original y-margin assumption, that is:

there exists §* € B{ such that y; (6*, z;) > ~ for all . (2)

To deal with this more general case, we will run Algorithm 1 using a different link function
g(0) = exp(nd) — exp(—nh) (again, the exponentiation is coordinate-wise). This is the
(actual) Winnow algorithm.

ii.

(4pts) Prove that the Winnow algorithm is the same as running the simplified Winnow

algorithm over examples 7} = (x4, —x;) € B2 andy; =y, fort =1,...,n
Proof. When running the simplified Winnow over z; = (z4,—2;) € B2¢ and

y; = Yz, the vector 6 at the beginning of round ¢, renamed as 6’ to avoid confusion,
is Y, 1{yr # s;} y- (x5, —x,), which is equal to (0, —0), where 6 here is now the
weight vector of the actual Winnow algorithm at the beginning of round ¢. Therefore,
the two algorithms make the exact same prediction:

sign(((z¢, —z¢), exp(nd’))) = sign((x¢, exp(n6)) —(z1, exp(—nb))) = sign({(z, g(0))).
O

(6pts) Under the margin assumption Equation (2), further prove that the examples
(2}.,,, ¥}.,) defined above satisfy Equation (1) for some margin ~/, that is, there exists
0’ € A(2d) such that y; (¢, ;) > ~' for all ¢.

Proof. Define 6" = (0%,60%) € R?? where 6* is from Equation (2), ¢ is obtained
by zeroing out all coordinates of §* that are negative, and similarly 6* is obtained
by zeroing out all coordinates of —@* that are negative. Further define 8’ € A(2d)
by normalizing the coordinates of 6" (which are all nonnegative). Now, the condition
ye (0%, ) > ~ from Equation (2) implies
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where the last inequality is due to ||0”||; = ||0*||; < 1. Therefore, the margin assump-
tion of Equation (1) is satisfied with the same margin 4" = ~. O



iii.

(2pts) Finally, under the margin assumption Equation (2), use the result from Question
(a)iii to provide a bound on the total number of mistakes made by the Winnow
algorithm when n = 7.

Proof. Since Winnow is the same as the simplified Winnow run on a problem in R??
that satisfies the assumption Equation (1) with margin ~, the total number of mistakes

is at most 41:7(22@. ]



