
CSCI 678: Theoretical Machine Learning
Homework 3

Fall 2024, Instructor: Haipeng Luo

This homework is due on 11/03, 11:59pm. See course website for more instructions on finishing
and submitting your homework as well as the late policy. Total points: 40

1. (Hedge) (6pts) For a finite class of binary classifier F ⊂ {−1,+1}X , under the realizable as-
sumption inff∈F

∑n
t=1 1 {f(xt) ̸= yt} = 0, prove that Hedge with learning rate η = 1/2 makes

at most 4 ln |F| mistakes in expectation. Hint: use Lemma 1 of Lecture 6. (Note that this is sim-
ilar to the guarantee of Halving, but achieved via a proper algorithm this time.)

Proof. Similarly to the proof of Theorem 6 of Lecture 6, to apply Lemma 1 we set K = |F|,
rename the element of F by 1, . . . ,K, and set ℓt(i) = ℓ(i, zt), so that Hedge exactly samples ŷt
according to pt as defined in Lemma 1. The realizable assumption becomes mini⋆

∑n
t=1 ℓt(i

⋆) =
0, and thus Lemma 1 states

n∑
t=1

⟨pt, ℓt⟩ ≤
lnK

η
+ η

n∑
t=1

K∑
i=1

pt(i)ℓ
2
t (i).

Since ℓt(i) is either 0 or 1, the term
∑K

i=1 pt(i)ℓ
2
t (i) is in fact equal to ⟨pt, ℓt⟩. Therefore,

rearranging gives
n∑

t=1

⟨pt, ℓt⟩ ≤
lnK

(1− η)η
.

The left hand side of the above inequality is exactly the expected number of mistakes made by
Hedge, and the right hand side is 4 ln |F| with the specific choice of learning rate η = 1/2, which
finishes the proof.

2. (Perceptron and sequential fat-shattering dimension) Recall the sequential fat-shattering di-
mension sfat(F , α) defined in Lectures 6. Let X = Bd

2 and F =
{
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

2

}
. In

this exercise, you will prove sfat(F , α) ≤ 16
α2 (which is independent of d) for any α > 0, using

an indirect approach that leverages the guarantee of the Perceptron algorithm.
More specifically, suppose that x is a X -valued tree of depth n that is α-shattered by F , with
witness y, a [−1,+1]-valued tree. Now, imagine running Perceptron in the following problem
instance in Rd+1:

Let θ′ = 0 ∈ Rd+1. For t = 1, . . . , n:
• Environment reveals example x′

t =
1√
2
(xt(y

′
1:t−1),yt(y

′
1:t−1)) ∈ Bd+1

2 .

• Perceptron algorithm predicts st = sign(⟨x′
t, θ

′⟩).
• Environment reveals y′t = −st, forcing Perceptron to make an update θ′ ← θ′ + y′tx

′
t.

Note that the environment is valid even though it seemingly decides the label y′t after seeing the
algorithm’s prediction st, since Perceptron is a deterministic algorithm (and thus x′

1:n and y′1:n
are in fact all fixed ahead of time).

(a) (4pts) Prove that the data constructed above satisfy the γ-margin assumption (Assumption
1 of Lecture 7) with p = q = 2. In other words, find a specific value of γ > 0 and show that
there exists θ′⋆ ∈ Bd+1

2 such that y′t ⟨θ′⋆, x′
t⟩ ≥ γ holds for all t = 1, . . . , n.

Proof. Since x is α-shattered by F , there exists θ ∈ Bd
2 such that

y′t(
〈
θ,xt(y

′
1:t−1)

〉
− yt(y

′
1:t−1)) ≥

α

2

holds for all t = 1, . . . , n. This is equivalently to y′t ⟨θ′⋆, x′
t⟩ ≥ γ if we let θ′⋆ = 1√

2
(θ,−1) ∈

Bd+1
2 and γ = α

4 , showing that the margin assumption is satisfied with γ = α
4 .

(b) (3pts) Use the guarantee of Perceptron (that is, Theorem 3 of Lecture 7) to conclude
sfat(F , α) ≤ 16

α2 .

Proof. Since the margin assumption is satisfied with γ = α
4 , Theorem 3 of Lecture 7 shows

that Perceptron makes at most 1/γ2 = 16/α2 mistakes. On the other hand, the construction
is such that Perceptron makes a mistake in every round, which must imply n ≤ 16/α2.
Since x is an arbitrary tree α-shattered by F , this further implies sfat(F , α) ≤ 16

α2 .

2

3. (Winnow) When the γ-margin assumption holds with p = q = 2, we have seen that Perceptron
makes at most 1

γ2 mistakes for an online binary classification problem. In this exercise, you will
prove a similar result when the γ-margin assumption holds with p = 1 and q = ∞, using a
different algorithm called Winnow. To show this, we first consider the following generalization
of Perceptron, defined in terms of some link function g : Rd → Rd.

Algorithm 1: A generalization of Perceptron
Let θ = 0. For t = 1, . . . , n:

• Receive xt and predict st = sign(⟨xt, g(θ)⟩).
• Receive yt ∈ {−1,+1}. If yt ̸= st, update θ ← θ + ytxt.

It is clear that when instantiated with g being the identity mapping g(θ) = θ, Algorithm 1 is
exactly the Perceptron algorithm. Below, we will see that the Winnow algorithm is also an
instance of Algorithm 1 but with a different link function. Throughout, we assume xt ∈ Bd

∞,
that is, ∥xt∥∞ ≤ 1, for all t.

(a) Consider running Algorithm 1 with link function g(θ) = exp(ηθ) and some parameter η > 0
(where the exponentiation is applied coordinate-wise to the vector ηθ). Let’s call this the
simplified Winnow algorithm.

i. (4pts) Find a sequence of loss vectors ℓ1, . . . , ℓn ∈ [−1,+1]d such that the pre-
diction of simplified Winnow st = sign(⟨xt, g(θ)⟩) can be equivalently written as
st = sign(⟨xt, pt⟩), where pt ∈ ∆(d) is a distribution such that

pt(i) ∝ exp

(
−η
∑
τ<t

ℓτ (i)

)
, for all i = 1, . . . , d.

Proof. The loss vector ℓt should be −1 {yt ̸= st} ytxt (which is in [−1,+1]d since
∥xt∥∞ ≤ 1). This is because at the beginning of round t, the vector θ is∑

τ<t 1 {yτ ̸= sτ} yτxτ , and thus

st = sign(⟨xt, g(θ)⟩) = sign
(〈

xt,
g(θ)

∥g(θ)∥1

〉)
= sign(⟨xt, pt⟩).

ii. (8pts) Based on the reformulation of the last question, apply Lemma 1 of Lecture 6 to
show that as long as η ≤ 1, we have for any θ⋆ ∈ ∆(d):

n∑
t=1

1 {yt ̸= st} yt ⟨θ⋆, xt⟩ ≤
ln d

η
+ ηM,

where M =
∑n

t=1 1 {yt ̸= st} is the total number of mistakes made by the simplified
Winnow algorithm.

Proof. Since η ≤ 1 and ℓt(i) ∈ [−1, 1], the condition ηℓt(i) ≥ −1 of Lemma 1 of
Lecture 6 holds. Directly applying the lemma then shows for any i⋆ ∈ {1, . . . , d},

n∑
t=1

⟨pt, ℓt⟩ −
n∑

t=1

ℓt(i
⋆) ≤ ln d

η
+ η

n∑
t=1

d∑
i=1

pt(i)ℓt(i)
2,

which means for any θ⋆ ∈ ∆(d):

n∑
t=1

⟨pt, ℓt⟩ −
n∑

t=1

⟨θ⋆, ℓt⟩ ≤
ln d

η
+ η

n∑
t=1

d∑
i=1

pt(i)ℓ
2
t (i).

We now plug in the definition of ℓt and bound each term. First, we have
n∑

t=1

⟨pt, ℓt⟩ =
n∑

t=1

−1 {yt ̸= st} yt ⟨pt, xt⟩ ≥ 0,

3

where the inequality is because whenever 1 {yt ̸= st} = 1, we must have yt ⟨pt, xt⟩ ≤
0 since st = sign(⟨pt, xt⟩). Second, we have by definition.

−
n∑

t=1

⟨θ⋆, ℓt⟩ =
n∑

t=1

1 {yt ̸= st} yt ⟨θ⋆, xt⟩

Finally, since x2
t (i) ≤ 1, we have

n∑
t=1

d∑
i=1

pt(i)ℓ
2
t (i) ≤

n∑
t=1

d∑
i=1

pt(i)1 {yt ̸= st} = M.

Combining all terms finishes the proof.

iii. (3pts) Consider the following assumption that is slightly stronger than the original γ-
margin assumption with p = 1 and q =∞:

there exists θ⋆ ∈ ∆(d) such that yt ⟨θ⋆, xt⟩ ≥ γ for all t. (1)

Prove that under this assumption, the total number of mistakes M made by the
simplified Winnow algorithm is at most 4 ln d

γ2 when η = γ
2 ≤ 1.

Proof. Using the assumption and continuing with the result from the last question, we
have

γM ≤
n∑

t=1

1 {yt ̸= st} yt ⟨θ⋆, xt⟩ ≤
ln d

η
+ ηM.

Rearranging and plugging the value of η proves the claim.

(b) Now consider the original γ-margin assumption, that is:

there exists θ⋆ ∈ Bd
1 such that yt ⟨θ⋆, xt⟩ ≥ γ for all t. (2)

To deal with this more general case, we will run Algorithm 1 using a different link function
g(θ) = exp(ηθ) − exp(−ηθ) (again, the exponentiation is coordinate-wise). This is the
(actual) Winnow algorithm.

i. (4pts) Prove that the Winnow algorithm is the same as running the simplified Winnow
algorithm over examples x′

t = (xt,−xt) ∈ B2d
∞ and y′t = yt for t = 1, . . . , n.

Proof. When running the simplified Winnow over x′
t = (xt,−xt) ∈ B2d

∞ and
y′t = yt, the vector θ at the beginning of round t, renamed as θ′ to avoid confusion,
is
∑

τ<t 1 {yτ ̸= sτ} yτ (xτ ,−xτ), which is equal to (θ,−θ), where θ here is now the
weight vector of the actual Winnow algorithm at the beginning of round t. Therefore,
the two algorithms make the exact same prediction:

sign(⟨(xt,−xt), exp(ηθ
′)⟩) = sign(⟨xt, exp(ηθ)⟩−⟨xt, exp(−ηθ)⟩) = sign(⟨xt, g(θ)⟩).

ii. (6pts) Under the margin assumption Equation (2), further prove that the examples
(x′

1:n, y
′
1:n) defined above satisfy Equation (1) for some margin γ′, that is, there exists

θ′ ∈ ∆(2d) such that y′t ⟨θ′, x′
t⟩ ≥ γ′ for all t.

Proof. Define θ′′ = (θ⋆+, θ
⋆
−) ∈ R2d where θ⋆ is from Equation (2), θ⋆+ is obtained

by zeroing out all coordinates of θ⋆ that are negative, and similarly θ⋆− is obtained
by zeroing out all coordinates of −θ⋆ that are negative. Further define θ′ ∈ ∆(2d)
by normalizing the coordinates of θ′′ (which are all nonnegative). Now, the condition
yt ⟨θ⋆, xt⟩ ≥ γ from Equation (2) implies

γ ≤ yt ⟨θ⋆, xt⟩ = yt ⟨θ′′, (xt,−xt)⟩ = y′t ∥θ′′∥1 ⟨θ
′, x′

t⟩ ≤ y′t ⟨θ′, x′
t⟩ ,

where the last inequality is due to ∥θ′′∥1 = ∥θ⋆∥1 ≤ 1. Therefore, the margin assump-
tion of Equation (1) is satisfied with the same margin γ′ = γ.

4

iii. (2pts) Finally, under the margin assumption Equation (2), use the result from Question
(a)iii to provide a bound on the total number of mistakes made by the Winnow
algorithm when η = γ

2 .

Proof. Since Winnow is the same as the simplified Winnow run on a problem in R2d

that satisfies the assumption Equation (1) with margin γ, the total number of mistakes
is at most 4 ln(2d)

γ2 .

5

