
CSCI 678: Theoretical Machine Learning
Homework 4

Fall 2024, Instructor: Haipeng Luo

This homework is due on 12/01, 11:59pm. See course website for more instructions on finishing
and submitting your homework as well as the late policy. Total points: 50

1. (Stochastic MAB) In Lecture 9, we proved that UCB achieves Regn = O(
∑

a:∆a>0
lnn
∆a

), which
increases as the gaps decrease and make it harder to distinguish the optimal actions from the rest.
However, if an action really has a tiny suboptimality gap, then by definition selecting it does not
lead to large regret and thus there is really no point in distinguishing it from the optimal actions.
Building on this intuition, in this problem you will further prove that UCB indeed also guarantees
O(
√
nK lnn) pseudo regret at the same time, regardless of the values of the gaps.

(a) (5pts) Recall (from Theorem 1 of Lecture 9) that with probability at least 1− 2K
n , we have

mn(a) ≤ 16 lnn
∆2

a
+1 for every action a where mn(a) is the total number of times action a is

pulled. Use this fact to prove the following pseudo regret bound

Regn ≤ 3K +∆n+
∑

a:∆a>∆

16 lnn

∆a
, (1)

where ∆ ∈ [0, 1] is an arbitrary threshold. (This matches the earlier intuition that we do not
care about distinguishing an action with a small gap from the optimal action.)

Proof. Similar to the proof of Theorem 1, we denote by E the high probability event under
which mn(a) ≤ 16 lnn

∆2
a

+ 1 for all a, and bound the pseudo regret as

Regn ≤ Pr(E)×
∑

a:∆a>0

∆aE [mn(a) | E] + Pr(¬E)× n

≤
∑

a:∆a>0

∆aE [mn(a) | E] + 2K.

To continue, we separate the term
∑

a:∆a>0 ∆aE [mn(a) | E] into two parts:∑
a:∆a>0

∆aE [mn(a) | E] =
∑

a:∆a≤∆

∆aE [mn(a) | E] +
∑

a:∆a>∆

∆aE [mn(a) | E] .

Next, we bound the first term trivially by ∆
∑

a:∆a≤∆ E [mn(a) | E] ≤ ∆n (since∑K
a=1 mn(a) = n), and the second term by∑

a:∆a>∆

∆a ×
(
16 lnn

∆2
a

+ 1

)
≤

∑
a:∆a>∆

16 lnn

∆a
+K.

Combining everything proves the claim.



(b) (2pts) Pick an appropriate value of ∆ and conclude the following bound

Regn = O(
√
nK lnn).

(You can assume n ≥ K.)
Proof. First, note that the bound from the last question can be further bounded as

Regn ≤ 3K +∆n+
16K lnn

∆
.

Therefore, picking ∆ = min

{
1,
√

K lnn
n

}
(which is order-optimal) then proves Regn =

O(
√
nK lnn).
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2. (Multiclass Perceptron) In this exercise, you need to analyze variants of the Perceptron algo-
rithm for multiclass classification, with either full information or bandit information. Specifi-
cally, consider a sequence of examples x1, . . . , xn ∈ Bd

2 with labels y1, . . . , yn ∈ [K] where K
is the number of possible classes. We assume that the following multiclass margin assumption
holds: there exists a constant γ > 0 and K weight vectors θ1⋆, . . . , θ

K
⋆ ∈ Bd

2 such that for each
t = 1, . . . , n:

⟨θyt
⋆ , xt⟩ ≥

〈
θk⋆ , xt

〉
+ γ, ∀k ̸= yt.

In other words, the predictor argmaxk
〈
θk, xt

〉
makes perfect predictions for this dataset with γ

margin. Now, consider the following learning protocol:

For t = 1, . . . , n:
• receive xt and predict st ∈ [K];

• observe
{
yt in the full-information setting
1 {st ̸= yt} (i.e., if the prediction is correct) in the bandit setting

In either case, we care about the total number of mistakes M =
∑n

t=1 1 {st ̸= yt}.

(a) In the full information setting, one can apply the following multiclass Perceptron algorithm,
a natural generalization of its binary version studied in Lecture 7. Note that when the al-
gorithm predicts correctly, the last update step in fact does nothing (similarly to the binary
version).

Algorithm 1: Multiclass Perceptron

Initialize θ1 = · · · = θK = 0.
For t = 1, . . . , n:

• receive xt and find kt ∈ argmaxk∈[K]

〈
θk, xt

〉
;

• predict st = kt;
• receive yt and update

θyt ← θyt + xt and θkt ← θkt − xt.

Follow the steps below to prove M ≤ 2K
γ2 for this algorithm.

i. (6pts) Similar to the binary case, we need to analyze the evolution of the quantities∑K
k=1

〈
θk, θk⋆

〉
and

∑K
k=1

∥∥θk∥∥2
2
. To this end, denote the value of the weight vectors

θ1, . . . , θK at the beginning of round t by θ1t , . . . , θ
K
t . Under the margin assumption,

prove the following two facts for any t = 1, . . . , n:
K∑

k=1

〈
θkt+1, θ

k
⋆

〉
≥

K∑
k=1

〈
θkt , θ

k
⋆

〉
+ γ1 {st ̸= yt} ,

and
K∑

k=1

∥∥θkt+1

∥∥2
2
≤

K∑
k=1

∥∥θkt ∥∥22 + 21 {st ̸= yt} .

Proof. If yt = st, then clearly θkt+1 = θkt for all k and both statements become trivial.
Now suppose yt ̸= st = kt, so that θyt

t+1 = θyt

t + xt, θkt
t+1 = θkt

t − xt, and θkt+1 = θkt
for k /∈ {yt, kt}. In this case, we have

K∑
k=1

〈
θkt+1, θ

k
⋆

〉
=

K∑
k=1

〈
θkt , θ

k
⋆

〉
+
〈
xt, θ

yt
⋆ − θkt

⋆

〉
≥

K∑
k=1

〈
θkt , θ

k
⋆

〉
+ γ,

where the last step is by the margin assumption and kt ̸= yt. This proves the first
statement. The second statement holds since

K∑
k=1

∥∥θkt+1

∥∥2
2
=

K∑
k=1

∥∥θkt ∥∥22 + 2
〈
θyt

t − θkt
t , xt

〉
+ 2 ∥xt∥22 ≤

K∑
k=1

∥∥θkt ∥∥22 + 2
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where the last steps uses the fact ∥xt∥2 ≤ 1 and the definition of kt.

ii. (3pts) Combine the two facts in the last question to conclude M ≤ 2K
γ2 (Hint: you will

need to use the Cauchy-Schwarz inequality.)

Proof. Repeatedly applying the two facts from the last question shows γM ≤∑K
k=1

〈
θkn+1, θ

k
⋆

〉
and

∑K
k=1

∥∥θkn+1

∥∥2
2
≤ 2M . To connect these two, we apply the

Cauchy-Schwarz inequality together with the fact
∥∥θk⋆∥∥ ≤ 1 to show

K∑
k=1

〈
θkn+1, θ

k
⋆

〉
≤

√√√√ K∑
k=1

∥∥θkn+1

∥∥2
2

√√√√ K∑
k=1

∥θk⋆∥
2
2 ≤

√√√√K

K∑
k=1

∥∥θkn+1

∥∥2
2
.

Combining everything shows γM ≤
√
2KM , which implies M ≤ 2K

γ2 as claimed.

(b) In the bandit setting, we make the following two changes to Algorithm 1: 1) first, in light
of the exploration versus exploitation trade-off, it is natural to randomize the algorithm and
explore every label with at least some small probability α; 2) second, the update θyt ←
θyt + xt becomes invalid if the prediction is incorrect (since we do not know what yt is), so
we only do this update when we predict correctly, and we scale the update with the inverse
probability of selecting the correct label, just like the idea of importance-weighted estimator
in Exp3. The final algorithm is shown below.

Algorithm 2: Multiclass Perceptron with Bandit Feedback

Input: exploration parameter α ∈ (0, 1
2K ].

Initialize θ1 = · · · = θK = 0.
For t = 1, . . . , n:

• receive xt and find kt ∈ argmaxk∈[K]

〈
θk, xt

〉
;

• predict st drawn from pt, where pt(k) = (1− αK)1 {k = kt}+ α,∀k;
• receive 1 {st ̸= yt} and update

θyt ← θyt +
xt1 {st = yt}

pt(yt)
and θkt ← θkt − xt.

Follow the steps below to prove that this algorithm makes at most O
(

K
√
n

γ2

)
mistakes in

expectation. We will again use the notation θ1t , . . . , θ
K
t to denote the value of the weight

vectors θ1, . . . , θK at the beginning of round t, and study the evolution of the quantities∑K
k=1

〈
θk, θk⋆

〉
and

∑K
k=1

∥∥θk∥∥2
2

(in expectation this time).

i. (3pts) Under the margin assumption, prove the following for any t = 1, . . . , n:

E

[
K∑

k=1

〈
θkt+1, θ

k
⋆

〉]
≥ E

[
K∑

k=1

〈
θkt , θ

k
⋆

〉]
+ γE [1 {kt ̸= yt}] .

Proof. Condition on the history before round t so that θ1t , . . . , θ
K
t and kt are fixed, and

let Et be the conditional expectation. Then we have

Et

[
K∑

k=1

〈
θkt+1, θ

k
⋆

〉]
=

[
K∑

k=1

〈
θkt , θ

k
⋆

〉]
+ Et

[〈
xt1 {st = yt}

pt(yt)
, θyt

⋆

〉]
−
〈
xt, θ

kt
⋆

〉
=

[
K∑

k=1

〈
θkt , θ

k
⋆

〉]
+
〈
xt, θ

yt
⋆ − θkt

⋆

〉
≥

[
K∑

k=1

〈
θkt , θ

k
⋆

〉]
+ 1 {kt ̸= yt} γ

where the last step uses the margin assumption. Further taking expectation over the
history finishes the proof.

4



ii. (8pts) Next, prove the following for any t = 1, . . . , n:

E

[
K∑

k=1

∥∥θkt+1

∥∥2
2

]
≤ E

[
K∑

k=1

∥∥θkt ∥∥22
]
+

E [1 {kt ̸= yt}]
α

+ 1.

Hint: consider the two cases kt ̸= yt and kt = yt separately.

Proof. Again, condition on the history before round t so that θ1t , . . . , θ
K
t and kt are

fixed, and let Et be the conditional expectation. If kt ̸= yt, then

Et

[
K∑

k=1

∥∥θkt+1

∥∥2
2

]
−

K∑
k=1

∥∥θkt ∥∥22
= Et

[∥∥∥∥θyt

t +
xt1 {st = yt}

pt(yt)

∥∥∥∥2
2

]
− ∥θyt

t ∥
2
2 +

∥∥∥θkt
t − xt

∥∥∥2
2
−
∥∥∥θkt

t

∥∥∥2
2

= 2Et

[〈
xt,

1 {st = yt}
pt(yt)

θyt

t − θkt
t

〉]
+ Et

[
1 {st = yt}
pt(yt)2

]
∥xt∥22 + ∥xt∥22

= 2
〈
xt, θ

yt

t − θkt
t

〉
+

(
1

pt(yt)
+ 1

)
∥xt∥22

≤ 1

pt(yt)
+ 1 (By definition of kt and ∥xt∥ ≤ 1)

=
1

α
+ 1. (pt(k) = α for k ̸= kt)

On the other hand, if kt = yt, then

Et

[
K∑

k=1

∥∥θkt+1

∥∥2
2

]
−

K∑
k=1

∥∥θkt ∥∥22
= Et

[∥∥∥∥θyt

t +

(
1 {st = yt}

pt(yt)
− 1

)
xt

∥∥∥∥2
2

]
− ∥θyt

t ∥
2
2

= 2Et

[(
1 {st = yt}

pt(yt)
− 1

)
⟨xt, θ

yt

t ⟩
]
+ Et

[(
1 {st = yt}

pt(yt)
− 1

)2
]
∥xt∥22 .

The first conditional expectation above is simply 0, while the second one is

pt(yt)×
(

1

pt(yt)
− 1

)2

+ (1− pt(yt)) =
1

pt(yt)
− 1.

Therefore, using the facts pt(yt) = pt(kt) ≥ 1− αK and ∥xt∥2 ≤ 1 we arrive at

Et

[
K∑

k=1

∥∥θkt+1

∥∥2
2

]
−

K∑
k=1

∥∥θkt ∥∥22 ≤ 1

1− αK
− 1 ≤ 1,

where the last step is due to α ≤ 1
2K . Combining the two cases we have

Et

[
K∑

k=1

∥∥θkt+1

∥∥2
2

]
−

K∑
k=1

∥∥θkt ∥∥22 ≤ ( 1

α
+ 1

)
1 {kt ̸= yt}+1 {kt = yt} =

1 {kt ̸= yt}
α

+1.

Further taking expectation over the history finishes the proof.

iii. (5pts) Combine the results from the last two questions to show γE [N ] ≤√
K
(

E[N ]
α + n

)
where N =

∑n
t=1 1 {kt ̸= yt}. Further solve for E [N ] to

show E [N ] ≤ K
αγ2 +

√
Kn
γ .
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Proof. Repeatedly applying the result from the first question shows γE [N ] ≤
E
[∑K

k=1

〈
θkn+1, θ

k
⋆

〉]
, which is further bounded by

E


√√√√ K∑

k=1

∥∥θkn+1

∥∥2
2


√√√√ K∑

k=1

∥θk⋆∥
2
2 ≤ E


√√√√K

K∑
k=1

∥∥θkn+1

∥∥2
2

 ≤
√√√√KE

[
K∑

k=1

∥∥θkn+1

∥∥2
2

]

where the first step is by Cauchy-Schwarz inequality, the second step is by
∥∥θk⋆∥∥2 ≤ 1,

and the last step is by Jensen’s inequality. Now, repeatedly applying the result from the
second question shows

γE [N ] ≤

√√√√KE

[
n∑

t=1

1 {kt ̸= yt}
α

+ 1

]
=

√
K

(
E [N ]

α
+ n

)
.

Squaring both sides and rearranging leads to the following quadratic inequality in terms
of E [N ]:

γ2E [N ]
2 − K

α
E [N ]−Kn ≤ 0.

Solving for it gives

E [N ] ≤ 1

2γ2

(
K

α
+

√
K2

α2
+ 4γ2Kn

)

≤ 1

2γ2

(
K

α
+

√
K2

α2
+
√
4γ2Kn

)
=

K

αγ2
+

√
Kn

γ
.

This finishes the proof.

iv. (4pts) Finally, use the result from the last step to prove E [M ] ≤ K
αγ2 +

√
Kn
γ + αnK,

and pick an appropriate value of α to conclude E [M ] = O
(

K
√
n

γ + K2

γ2

)
.

Proof. It suffices the connect N and M as follows:

E [M ] = E

[
n∑

t=1

1 {st ̸= yt}

]
= E

[
n∑

t=1

K∑
k=1

pt(k)1 {k ̸= yt}

]

= E

 n∑
t=1

pt(kt)1 {kt ̸= yt}+ α
∑
k ̸=kt

1 {k ̸= yt}


≤ E [N ] + αnK ≤ K

αγ2
+

√
Kn

γ
+ αnK.

Picking the optimal choice of α = min
{

1
γ
√
n
, 1
2K

}
proves the claimed mistake bound.
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3. (Partial Monitoring) Recall the dynamic pricing problem discussed in Lecture 9 and consider
a simplified case with only 3 possible prices (1, 2, or 3 dollars). The loss matrix and feedback
matrix are thus

ℓ =

(
0 1 2
c 0 1
c c 0

)
and Φ =

(
✓ ✓ ✓
✗ ✓ ✓
✗ ✗ ✓

)
for some storage cost c > 0. The cell decomposition of this problem is illustrated in the following
picture, where we show the simplex ∆(3) by considering only the first two coordinates u1 and
u2. Clearly, all 3 actions are Pareto-optimal, and every two actions are neighbors.

u1

u2

(0, 0) (1, 0)

(0, 1)

ζ

α

β

γ

(a) (3pts) State which colored region in the cell decomposition picture corresponds to cell C1,
C2, and C3 respectively. Briefly explain why.

Proof. The green region contains u = (1, 0, 0), under which action 1 is clearly the optimal
action, meaning that this region must be C1. Similarly, the red region contains u = (0, 1, 0),
under which action 2 is the optimal action, so this region is C2, and the blue region must be
C3.

(b) (4pts) Calculate the coordinates of the four points α, β, γ, and ζ shown on the cell
decomposition picture.

Proof. Let (x, 0, 1 − x) ∈ ∆(3) be the distribution that α represents. The fact that it sits
on C1 ∩ C3 implies ⟨ℓ1, (x, 0, 1− x)⟩ = ⟨ℓ3, (x, 0, 1− x)⟩. Plugging in ℓ1 = (0, 1, 2) and
ℓ3 = (c, c, 0) gives 2(1− x) = xc. Solving for x gives x = 2

c+2 and thus α = ( 2
c+2 , 0).

Similarly, let (0, y, 1 − y) be the distribution that β represents. It sits on C2 ∩ C3 and thus
⟨ℓ2, (0, y, 1− y)⟩ = ⟨ℓ3, (0, y, 1− y)⟩. Solving for y gives β = (0, 1

c+1 ).
Next, let (z, 1 − z, 0) be the distribution that γ represents. It sits on C1 ∩ C2 and thus
⟨ℓ1, (z, 1− z, 0)⟩ = ⟨ℓ2, (z, 1− z, 0)⟩. Solving for z gives γ = ( 1

c+1 ,
c

c+1 ).
Finally, to find the coordinates of ζ, we find the distribution u ∈ ∆(3) such that ⟨ℓ1, u⟩ =
⟨ℓ2, u⟩ = ⟨ℓ3, u⟩, which leads to u = ( 1

c+1 ,
c

(c+1)2 ,
c2

(c+1)2 ), and thus ζ = ( 1
c+1 ,

c
(c+1)2 ).

(c) (4pts) Prove that the following two action pairs are both locally observable: 1 and 2, 2 and 3.

Proof. The signal matrices are

S1 =

(
1 1 1
0 0 0

)
, S2 =

(
0 1 1
1 0 0

)
, S3 =

(
0 0 1
1 1 0

)
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(note that swapping the two rows is also correct). Therefore, we have

ℓ1 − ℓ2 = (−c, 1, 1) = (1,−c)S2

and

ℓ2 − ℓ3 = (0,−c, 1) = (0, c, 1,−c)
(
S2

S3

)
,

which by definition implies their local observability.

(d) (3pts) The results from the last question imply that actions 1 and 3 must be globally
observable. Now, prove that they are not locally observable. (This implies that this is a
globally observable but not locally observable partial monitoring instance.)

Proof. Note that ℓ1 − ℓ3 = (−c, 1− c, 2), with the first two coordinates being distinct. On
the other hand, the rows of S1 and S3 all have identical values for the first two coordinates.
This means that ℓ1 − ℓ3 cannot be in the row space of SN13 and thus actions 1 and 3 are not
locally observable.
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