
CSCI 678: Theoretical Machine Learning
Lecture 1

Fall 2024, Instructor: Haipeng Luo

1 A Gentle Start: Supervised Learning

Machine learning is the powerhouse of AI and has enabled numerous AI breakthroughs in recent
years. In this course, we will look at machine learning from a mathematical perspective, trying
to understand when, why, and how it works. Of course, machine learning has become a vast and
multifaceted subject nowadays, and this course can only cover a tiny (but hopefully fundamental)
piece of it. In this first lecture, we will focus on introducing and formally defining the problems that
this course will cover (as well as briefly mentioning some other important topics that are out of the
scope of this course).

We will use supervised learning, the most classical machine learning problem, as a gentle start. In a
supervised learning problem, we are given a training set consisting of input-output pairs (often called
examples), and our goal is to learn from these examples some pattern on the connection between
input and output, and to come up with a good predictor that hopefully can accurately predict the
output of an unseen input. Examples include image classification (input = picture, output = dog or
cat; input = MRI scan, output = has tumor or not), machine translation (input = English, output =
French), language model (input = partial sentence, output = next word), video summarization (input
= video, output = caption), and many more.

What is the principle of designing such learning procedures, and how do we know if such procedures
will succeed or not? To answer these questions, we need to first formalize the learning problem. Let
X and Y be some arbitrary input and output space, and (x1, y1), . . . , (xn, yn) ∈ X ×Y be a training
set of n examples. For instance, in the image classification example, X might the space of all
256 × 256 images, and Y consists of two outcomes: dog and cat. It is often more convenient to
further abstract these spaces. For example, we could represent an image by a vector in Rd for some
dimension d, and use −1 to represent label “dog” and +1 to represent label “cat”, so that X ⊂ Rd

and Y = {−1,+1}.

Our goal is to come up with a predictor ŷ ∈ YX , which is a function mapping from the input space
to the output space. Given a new unseen input x ∈ X , the predictor predicts ŷ(x) as the output. For
example, ŷ could be a linear classifier, a decision tree, or a neural net.

So how do we measure the accuracy of ŷ? Suppose the actual output corresponding to x is y, then
the accuracy should naturally be measured by comparing y and ŷ(x) in some way. To this end,
define a general loss function ℓ : YX × (X × Y) → R, which maps a predictor and an input-output
pair to some loss value. The larger this value, the less accurate the predictor is on this example.

Some loss functions might be more suitable than others for a specific task. For example, for binary
classification (e.g., predict dog or cat for an image) with Y = {−1,+1}, a very natural loss is
ℓ(ŷ, (x, y)) = I{ŷ(x) ̸= y}, which is 1 if the predictor predicts a different label, and 0 otherwise
(so-called 0-1 loss). On the other hand, for regression (e.g., predicting house price), usually we have
Y = R and the loss is defined as ℓ(ŷ, (x, y)) = (ŷ(x)−y)2, which is the squared difference between
the prediction and the true output (so-called square loss).

Apparently, measuring the accuracy/loss of the predictor on one single example does not sound like
a good idea. In practice, we often measure the average loss over a test set: (x′

1, y
′
1), . . . , (x

′
m, y′m) ∈

X × Y for some m, defined as 1
m

∑m
i=1 ℓ(ŷ, (x

′
i, y

′
i)) and often called the test error. At this point,

from a practical perspective, we have a well-defined problem: given a training set, come up with
a predictor that enjoys low test error on a test set. However, from a theoretical perspective, the
problem is clearly still not well-defined — without any connection between the training set and the
test set, how is it possible at all to learn a predictor with a small test error?

i.i.d. assumption. Note that what usually happens in practice is that we collect a bunch of exam-
ples from the nature/environment, and then randomly split them into a training set and a test set.
This is often modeled as an i.i.d. setting, where it is assumed that examples from the nature are
generated independently according to a fixed but unknown distribution P supported on X × Y . In
this case, the training set and the test set are now closely related — the examples in these set are all
i.i.d. samples of P .

With this assumption, it makes more sense to measure the quality of a predictor ŷ by its expected
test error: E(x,y)∼P [ℓ(ŷ, (x, y))], where the expectation is with respect to the random draw of a
new example from the distribution P . This is also often called the risk. For a fixed predictor ŷ,
average loss over a test set is clearly just an unbiased estimate of the risk that is easy to compute in
practice. However, in theory it is more suitable to use the risk as the measure since this removes the
extra randomness from the test set. Indeed, for a fixed predictor ŷ, E(x,y)∼P [ℓ(ŷ, (x, y))] is a fixed
quantity while the test error 1

m

∑m
i=1 ℓ(ŷ, (x

′
i, y

′
i)) is a random variable. We also emphasize that P

is unknown in this formulation (which is of course also the case in practice); otherwise, finding a
predictor with small risk would simply be an optimization problem instead of a learning problem.

So with this i.i.d. assumption, is the learning problem well-defined now? Not completely — the
problem is still too general to be meaningful. Too see this, simply consider a binary classification
problem, where P(y = +1 | x) is 1

2 for every x, that is, the label of every input is a fair coin flip
according to the distribution P that generates the examples. In this case, no matter what ŷ is, the
expected 0-1 loss E(x,y)∼P [I{ŷ(x) ̸= y}] is simply 1

2 , so no learning will ever be possible.

Classical Statistics vs Statistical Learning. Of course, the above example is very pathological
and does not reflect what really happens in practice. To make the problem meaningful, we thus need
to incorporate more prior knowledge on the problem, and here comes the key separation between
classical statistics and statistical learning. In classical statistics, the standard approach is to assume
some very specific structure on the data distribution P . Take regression for example, one might make
the assumption that the marginal distribution PX over X is a Gaussian distribution with unknown
mean and covariance, and the conditional distribution P(y | x) is also a Gaussian with mean ⟨θ, x⟩
and some unknown variance, for some unknown parameter θ. Under such a structural assumption, a
natural approach would be to estimate all the unknown parameters using the training set (via Max-
imum Likelihood Estimation for example), and with the estimated parameters, prediction becomes
easy.

It is not hard to imagine that such a approach would work well if the assumption on P indeed holds.
However, it often provides no guarantees if the assumption is far away from the reality. To avoid
making such a strong assumption, statistical learning takes a quite different approach, which is often
called agnostic or distribution-free. It shifts the focus from the data-generating distribution to some
reference class of models F ⊂ YX , and asks the question: can I learn a predictor that is reasonably
well compared to the best option from the reference class F , without making any assumption on
P? In other words, we would like to make sure that the difference between the risk of ŷ and that of
the best fixed predictor from F , E [ℓ(ŷ, (x, y))]− inff∈F E [ℓ(f, (x, y))] , is relatively small, and we
want this to be true for any distribution P (hence distribution-free).

The rational behind this goal is that if we believe that the reference class F is good enough to
ensure a small risk, then our predictor is also reasonably good. So instead of incorporating the prior
knowledge into the structure of P , we incorporate the prior knowledge into the process of selecting
F . Importantly, this is in some sense a more “robust” approach, as we never impose an explicit
assumption on F or P , and in particular, we do not require the “ground truth” to be in F .

This agnostic formulation of learning problem will be the key focus of this course, and we will make
it even more formal in the following sections. One might ask if the problem is well-defined now and
if such an agnostic approach exists. The answer will (naturally) depend on the expressiveness of

2

the reference class F , which also determines the sample complexity of learning, one of the main
subjects of this course.

2 A General Setup: Statistical Learning

Having the supervised learning example in mind, we now introduce a slightly more general statistical
learning setup that can capture more problems beyond supervised learning. Instead of using an input-
output pair (x, y) to represent an example, we will use a more abstract notation z ∈ Z instead, for
some abstract space Z . A training set of size n is generated by drawing n independent samples
z1, . . . , zn ∈ Z from a fixed distribution P that is unknown to the learner. After seeing the training
set, the learner needs to come up with a predictor ŷ ∈ D for some arbitrary decision space D. It is
worth pointing out that the notation ŷ in fact hides the dependence on the training set z1:n.1

The loss function ℓ is now a mapping from D × Z to R, and the risk of a predictor ŷ is defined as
L(ŷ) = Ez∼P [ℓ(ŷ, z)]. It is important to note that L(ŷ) is a random variable when ŷ is the output
of the learner, simply because ŷ depends on the training set, which itself is randomly generated.
The expected risk of ŷ should thus be written as Ez1:n∼Zn [L(ŷ)] = Ez1:n∼Zn [Ez∼P [ℓ(ŷ, z)]], but
whenever there is no confusion, we will simply use the notation E [L(ŷ)] or even E [ℓ(ŷ, z)], where
the expectation is with respect to the randomness of the training set, the unseen test point z, and in
fact even the internal randomness of the learner.

According to previous discussion, we will compare the expected risk of ŷ to the smallest risk
achieved by some reference space F ⊂ D. This difference is called the excess risk and is for-
mally defined as: E [L(ŷ)] − inff∈F L(f). When F = D, the learner is called proper; otherwise,
the learner is improper. We mostly consider proper learners in this course (but point out that im-
proper learning is sometimes necessary to achieve certain objectives). The learner’s goal is to come
up with a strategy that ensures vanishing excess risk, which means that the excess risk goes down
to 0 when n goes to infinity. In other words, the learner needs to find a predictor whose risk is
arbitrarily close to that of the best predictor in F , as the number of training examples increases. If
such an algorithm exists, we say that F is learnable. As a concrete example, if the excess risk of an
algorithm is of order 1/

√
n, then it means that it takes O(1/ϵ2) samples to learn the class F up to

error ϵ. Therefore, excess risk characterizes the sample complexity of learning F .

2.1 Examples

Many common learning problems can be captured by the setting described above. We already dis-
cussed agnostic supervised learning, where Z = X × Y and D ⊂ YX consists of mappings from
input to output, such as decision trees or neural nets. For classification, Y is a discrete set and 0-1
loss is commonly used, while for regression, Y is usually a continuous subset of R and the square
loss is commonly used.

PAC setting. Probably Approximately Correct (PAC) is a fundamental learning framework that
can be considered as the start of the field of computational learning theory. The most basic PAC
setting considers a supervised binary classification problem with Y = {−1,+1}, and makes the
assumption that P(y = f⋆(x) | x) = 1 for some f⋆ ∈ F . In other words, the label is realized
deterministically by a fixed ground truth function in the reference class. Note that in this case for
0-1 loss we have inff∈F L(f) = 0 and the excess risk is simply the risk of the learner’s output ŷ.
Instead of considering the expected risk of ŷ, in PAC we ask if one can come up with an algorithm
such that for any given ϵ > 0, any confidence level δ > 0, any marginal distributions PX , and any
f⋆ ∈ F , after seeing poly(1ϵ ,

1
δ) training examples, the output ŷ satisfies P(L(ŷ) ≤ ϵ) ≥ 1 − δ.

If such a algorithm exists, F is called PAC-learnable. It turns out that whether a class is PAC-
learnable is determined by similar things that determines the learnability of a general statistical
learning problem, and we will thus focus on the more general setup.

Density estimation. So far, all examples we have seen are instances of supervised learning. Here,
we consider an unsupervised learning example, where the goal of the learner is to estimate the
density of the data-generating distribution P . In particular, D = F consists of density functions

1Throughout, we use the notation a1:n to represent the set {a1, . . . , an}.

3

supported on Z , and the common loss function is the log loss ℓ(ŷ, z) = − log ŷ(z). The rational
behind log loss is that now the excess risk is connected to the Kullback-Leibler (KL) divergence
(with a slight abuse of notation, we use the same notation for a distribution and its density):

L(ŷ)− L(f) = −Ez∼P [log ŷ(z)] + Ez∼P [log f(z)]

= Ez∼P [logP(z)]− Ez∼P [log ŷ(z)] + Ez∼P [log f(z)]− Ez∼P [logP(z)]

= KL(P ∥ ŷ)− KL(P ∥ f).

2.2 The value of the game and no free lunch

Taking a game-theoretic perspective, we can also treat a learning problem as a (zero-sum) game
between a learner and an environment: the learner decides a learning strategy first, and then the en-
vironment decides a data-generating distribution and generates a training set, with the performance
of the learner measured by the excess risk. More precisely, we turn our focus to the following
minimax quantity, called the value of this game:2

V iid(F , n) = inf
π

sup
P

(
E [L(ŷ)]− inf

f∈F
L(f)

)
.

Here, P ranges over all distributions over Z , and π ranges over all strategies of the learner, that is, all
mappings from n training examples to a predictor ŷ ∈ D if the learner has no internal randomness,
or all distributions over mappings from n training examples to a predictor ŷ ∈ D if the learner is
randomized. Note that it is important that the learner “acts” first (that is, inf sup instead of sup inf),
which corresponds to the fact that the learner’s strategy needs to work for all distributions.

Clearly, the statement that F is learnable is now equivalent to lim supn→∞ V iid(F , n) = 0. In other
words, studying the value V iid(F , n) is all we need to do to understand the learnability of a class F .
(This, however, does not necessarily give us an explicit algorithm for learning F though.)

Is every class learnable? The answer is no, probably unsurprisingly. The following so-called no free
lunch theorem shows that one cannot learn a class that is too general.
Theorem 1 (No Free Lunch). Consider a binary classification problem with |X | ≥ 2n, Y =
{−1,+1}, and ℓ(ŷ, (x, y)) = I{ŷ(x) ̸= y} (0-1 loss). We have V iid(YX , n) ≥ 1/4, that is, the
class of all possible predictors, YX , is not learnable.

Intuitively, the reason that such a general class is not learnable is that the best predictor in YX

can behave arbitrarily on unseen examples, so the training set provides little information on how
we should generalize. While the reason is intuitive, formally proving this requires some careful
treatment (you are encouraged to think about why formalizing this intuition is not as easy as it might
seem). In particular, it requires using a randomized argument that is common in proving lower
bounds and allows us to ignore the behavior of the learner, as illustrated below.

Proof. Consider any fixed subset X ′ of X with 2n distinct elements. We will only consider data
distributions whose marginal over X is the uniform distribution over X ′, denoted by Q. To de-
fine the conditional distribution over Y , we consider N = 22n different “ground truth” predic-
tors f1, . . . , fN so that they realize all the 22n different ways to label the 2n elements in X ′. Fi-
nally, let Pk be a candidate distribution over X × Y where Pk(x, y) = 1

2n I{x ∈ X ′, y = fk(x)},
and note that under this distribution, we have inff∈F L(f) = L(fk) = 0 so the excess
risk is simply E [L(ŷ)] = ES∼QnEx∼Q[I{ŷ(x;Sk) ̸= fk(x)}], where we use S to denote the
unlabeled training set {x1, . . . , xn} and Sk to denote the corresponding labeled training set
{(x1, fk(x1)), . . . , (xn, fk(xn))}, and rewrite ŷ as ŷ(·;Sk) to emphasize its dependence on Sk.

Now, we argue that for any learner, one of these N candidate distributions must force the learner to
suffer at least 1/4 excess risk, which clearly implies V iid(YX , n) ≥ 1/4. To show this claim, for a
fixed learner, we will prove

1

N

N∑
k=1

ES∼QnEx∼Q[I{ŷ(x;Sk) ̸= fk(x)}] ≥ 1
4 ,

2The notation V iid(F , n) highlights the two important factors F and n, but note that it in fact also depends
on the loss ℓ, the example space Z , and the decision space D.

4

which is enough because if the average over k is at least 1/4, then there must exist one particular Pk

such that the excess risk is 1/4. Indeed, for each realization of S, we have

1

N

N∑
k=1

Ex∼Q[I{ŷ(x;Sk) ̸= fk(x)}]

≥ Pr[x /∈ S] · 1

N

N∑
k=1

Ex∼Q[I{ŷ(x;Sk) ̸= fk(x)} | x /∈ S]

≥ 1

2N

N∑
k=1

Ex∼Q[I{ŷ(x;Sk) ̸= fk(x)} | x /∈ S] (Pr[x /∈ S] ≥ 1
2)

= Ex∼Q

[
1

2N

N∑
k=1

I{ŷ(x;Sk) ̸= fk(x)}
∣∣∣∣ x /∈ S

]
=

1

4
. (1)

Here, the very last step is because when fixing x /∈ S, we can group the N different labeling
functions into N/2 pairs, where in each pair (fk, fk′), the two functions disagree only on x, and
thus I{ŷ(x;Sk) ̸= fk(x)}+ I{ŷ(x;Sk′) ̸= fk′(x)} = 1. This shows that the summarization over k
in Equation (1) is exactly N/2, finishing the proof.

To recap, this theorem shows that there is no hope to learn a class that is too expressive. More
generally, V iid(F , n) should depend on the “expressiveness” of the class F , and one of the core
questions we will answer in this course is how to formally measure the expressiveness of a class.

Generalization, representation, and optimization. As we will see in the next lecture, excess risk
is essentially controlled by how well an arbitrary predictor from F can generalize from the training
set to unseen data, that is, the generalization error. While a more expressive F requires higher
sample complexity to generalize well, it on the other hand also makes inff∈F L(f) smaller, that is,
the best predictor in the class can better represent the ground truth. This naturally induces a trade-
off between generalization error and representation error. In fact, as we will also discuss in the next
lecture, a learnable class can often be learned via solving an optimization problem, which introduces
optimization error as well. Moreover, different optimization algorithms might have different implicit
bias and search over different parts of F , leading to a very intricate trade-off among generalization
error, representation error, and optimization error. Each of these three sources of error has been
heavily studied in the literature (and could be a different course on its own), and the focus of this
course is on generalization error only.

3 A Harder Setup: Online Learning

The i.i.d. assumption of statistical learning, while standard, might be too strong in some cases. There
are many directions on relaxing this condition for statistical learning (for example, by assuming that
the training set and test set are from related but different distributions), but this is out of the scope
of this course. Instead, to go beyond the i.i.d. assumption, we will focus on a quite different setting
called online learning (or sequential prediction, sequential decision making, online optimization,
etc.), which completely removes any distributional assumptions.

We will follow most notation from the statistical learning setup. The key difference is in the learning
protocol. For statistical learning, a batch of data is available ahead of time, and learning is essentially
making a one-shot decision (that is, coming up with ŷ). Statistical learning is also sometimes called
batch learning due to this fact. For online learning, however, data are presented one by one in a
sequential manner, and the learner is asked to make a sequence of decisions. More concretely, the
learning procedure proceeds in rounds, and for each round t = 1, . . . , n,

• the learner predicts ŷt ∈ D while the environment chooses zt ∈ Z simultaneously,
• the learner suffers loss ℓ(ŷt, zt) and observes zt.

All the examples we discussed earlier for statistical learning have an online analogue. Such online
formulation indeed captures some real-world applications better, especially for Internet applica-
tions that are everywhere nowadays. For example, email spam detection, recommendation systems,

5

search, etc. are all arguably better captured by an online formulation. (In fact, online learning also
has many surprisingly applications in other areas such as optimization, game theory, privacy, etc.)

Very similar to the definition of excess risk, in online learning we measure the performance of the
learning by the regret, which is the difference between the learner’s total loss and that of the best
fixed predictor from a reference class F in hindsight:3

Reg(F , n) =

n∑
t=1

ℓ(ŷt, zt)− inf
f∈F

n∑
t=1

ℓ(f, zt).

So average regret is similar to excess risk, and we would like design an online learning algorithm
that ensures the average regret goes down to 0 as n increases. However, a very important distinction
is that there is usually no distributional assumption on how z1, . . . , zn are generated. In fact, they
could even be chosen by a malicious adversary! But what does that really mean mathematically?
What can zt depend on?

To answer this question, we first make it clear what ŷt can depend on. Naturally, ŷt can depend on
z1, . . . , zt−1, the previous outcomes from the environment before round t. In addition, if the learner
is randomized (which in fact is necessary in some cases), ŷt will depend on the internal randomness
of the learner as well. Equivalently, we can define the learner’s strategy π as a distribution over a
sequence of mappings πt : Zt−1 → D for t = 1, . . . , T .

Now, depending on what zt can depend on, we can define two kinds of environments. The first
one is called oblivious environment, where z1, . . . , zT can only depend on π, but not directly on the
learner’s decisions ŷ1, . . . , ŷT . In other words, we can imagine the environment in fact decides the
entire sequence of outcomes z1, . . . , zT even before the game starts, knowing the algorithm of the
learner. The second one is called adaptive environment, where z1, . . . , zT can again depend on π,
and in addition zt can depend on ŷ1, . . . , ŷt−1, the previous decisions of the learner before round t.

Clearly, adaptive environments are harder than oblivious environments, from the learner’s viewpoint.
Adaptive environments nicely capture applications where the opponent might be malicious, such as
spam detection. Somewhat surprisingly though, in most cases the difference in learnability between
adaptive and oblivious environments is not substantial.

3.1 The value of the game and online-to-batch conversion

Now that the problem has been defined, we should ask the question again: is learning possible at all
for such a difficult problem? Similarly to statistical learning, we turn our focus to the value of the
game:

V seq(F , n) = inf
π

sup
z1:n

E
[

Reg(F , n)

n

]
= inf

π
sup
z1:n

E

[
1

n

n∑
t=1

ℓ(ŷt, zt)− inf
f∈F

1

n

n∑
t=1

ℓ(f, zt)

]
,

where it is understood that for oblivious environments, z1:n ranges over Zn, while for adaptive
environments, each zt ranges over all mappings from Dt−1 to Z . We call F online learnable if
lim supn→∞ V seq(F , n) = 0. An algorithm that ensures vanishing regret as n increases is some-
times called a no-regret algorithm.

We argue that for adaptive environments, the value of the game can in fact be written as a sequence
of minimax expressions:

V seq(F , n) = inf
q1∈∆(D)

sup
z1∈Z

Eŷ1∼q1 · · · inf
qn∈∆(D)

sup
zn∈Z

Eŷn∼qn

[
Reg(F , n)

n

]
(2)

where ∆(D) is the simplex over D. We omit the (somewhat tedious) proof for this fact, but you
should be able to convince yourself that this is true. This alternative expression of the value will
be essential for further developments in future lectures. For notational convenience, we deploy the
following shorthand to suppress the long minimax sequence:

V seq(F , n) = ⟪ inf
qt∈∆(D)

sup
zt∈Z

Eŷt∼qt⟫
n

t=1

[
Reg(F , n)

n

]
. (3)

3Again, the notation Reg(F , n) only shows dependence on F and n while hiding others.

6

We conclude this section by proving an intuitive statement: online learning is harder than statistical
learning, that is V iid(F , n) ≤ V seq(F , n).
Theorem 2. For any F and any n, we have V iid(F , n) ≤ V seq(F , n).

Proof. The statement is proven via a classical online-to-batch conversion, which states that given
any online strategy, one can convert it into a batch strategy with excess risk at most the average
regret of the online strategy. This clearly implies the statement.

The conversion works as follows. Given a training set z1, . . . , zn in the statistical learning setting,
and an algorithm π for the online setting, simply feed z1, . . . , zn one by one to π and obtain decisions
ŷ1, . . . , ŷn. Finally, uniformly at random pick one of these decisions as the final predictor ŷ.

For any f ∈ F , we now have

E [L(ŷ)]− L(f) =
1

n

n∑
t=1

E [L(ŷt)]−
1

n

n∑
t=1

L(f) (by the construction of ŷ)

= E

[
1

n

n∑
t=1

ℓ(ŷt, zt)−
1

n

n∑
t=1

ℓ(f, zt)

]

≤ E

[
1

n

n∑
t=1

ℓ(ŷt, zt)− inf
f⋆∈F

1

n

n∑
t=1

ℓ(f⋆, zt)

]
where the second equality uses the fact that ŷt and f do not depend on zt. Finally, taking supf on
the left-hand side, we obtain

E [L(ŷ)]− inf
f∈F

L(f) ≤ E

[
1

n

n∑
t=1

ℓ(ŷt, zt)− inf
f∈F

1

n

n∑
t=1

ℓ(f, zt)

]
,

that is, the excess risk is never larger than the expected average regret, as desired.

In a few lectures, we will see that this inequality is in fact strict, that is, there exist classes that are
learnable in the statistical learning setting but not learnable in the online setting. Of course, you
will also see classes that are indeed online learnable, even though online learning seemingly looks
very challenging. Understanding what determines online learnability and the corresponding sample
complexity is another key subject of this course.

4 An Even Harder Setup: Online Learning with Partial Information

Finally, we briefly mention an even harder setup for online learning, which will be our focus near
the end of this course. The difficulty of this setting lies in the fact that the learner only has partial
information. Specifically, recall that in the last section, we assume that zt is revealed to the learner
at the end of each round. What if the learner instead only observes partial information of zt? Is
learning still possible?

Multi-armed Bandits. As an example, consider a problem instance where D = F = {1, . . . ,K},
Z = [0, 1]K , and ℓ(ŷ, z) = z(ŷ) (the ŷ-th coordinate of z). In words, each time the learner needs
to select one out of K items, denoted by ŷt, while simultaneously the environment decides the loss
of picking each item by specifying a loss vector zt. The loss of the learner is simply the loss of the
selected item, denoted as zt(ŷt). Importantly, instead of revealing the entire vector zt to the learner,
let us consider a harder setting where only the value zt(ŷt) is observed by the learner. This is in fact
nothing but the well-known Multi-armed Bandits (MAB) problem.

Such a learning formulation has many applications in real-world. For instance, a recommendation
system can be naturally cast as an instance of MAB, where the K items correspond to a set of
movies, products, or news articles, and selecting an item corresponds to recommending it to the
user. Afterwards, the system observes some feedback on the recommendation, which can then be
encoded as some loss or reward (e.g., if the user watches the recommended movie, then the loss is 0;
otherwise, the loss is 1). Importantly, the system does not observe the loss for the items that weren’t
recommended, which matches the partial information aspect of MAB.

7

MAB is just one canonical example of online learning with partial information, and we will discuss
several more in the future. While one can still formally define the value of such games, similar to
Equation (2), it is in fact much harder to actually “solve” such a complicated minimax problem,
and in particular, there is no obvious way to write it as a sequence of minimax expressions as in
Equation (3) (you should try!). Nevertheless, we will still discuss how exactly the partial informa-
tion structure affects learnability and how to design no-regret algorithms for these problems when
learning is possible.

8

	A Gentle Start: Supervised Learning
	A General Setup: Statistical Learning
	Examples
	The value of the game and no free lunch

	A Harder Setup: Online Learning
	The value of the game and online-to-batch conversion

	An Even Harder Setup: Online Learning with Partial Information

