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1 Partial Monitoring: Algorithms and Regret Upper Bounds

In the last lecture, we introduce the general partial monitoring problem parameterized by a loss
matrix ℓ ∈ [0, 1]K×d and a feedback matrix Φ ∈ ΣK×d (both known), where K is the number of
actions for the learner, d is the number of outcomes for the environment, and Σ is an arbitrary set
of alphabets containing all possible observations for the learner. Ahead of time, the environment
decides n outcomes z1, . . . , zn ∈ [d]. Then, for each round t = 1, . . . , n, the learner selects an
action at ∈ [K], suffers loss ℓ(at, zt), and only observes Φ(at, zt). The goal of the learner is as
usual to minimize regret against the best fixed action in hindsight:

Regn =

n∑
t=1

ℓ(at, zt)−
n∑

t=1

ℓ(a⋆, zt) where a⋆ ∈ argmin
a∈[K]

n∑
t=1

ℓ(a, zt).

We then discussed the classification theorem, which classifies all partial monitoring instances into
exactly four categories, based on the corresponding minimax regret:
Theorem 1 (Classification Theorem). The minimax regret of a partial monitoring problem G is
(ignoring dependence on all parameters but n):

inf
learner

max
z1:n

E [Regn] =


0, if G has only one Pareto-optimal action;
Θ(

√
n), else if G is locally observable;

Θ(n
2
3 ), else if G is globally observable;

Θ(n), else.

The goal of this lecture is to prove this theorem, starting from concrete algorithms whose regret
matches the claimed upper bounds. The first case when there is only one Pareto-optimal action is
trivial — the learner simply needs to stick with this unique Pareto-optimal action for every round to
ensure 0 regret, since the benchmark in the regret definition is exactly the total loss of this Pareto-
optimal action. The last case is also trivial from an upper bound perspective: any algorithm’s regret
is trivially O(n). In the rest of this section, we thus focus on the second and the third case.

1.1 Globally observable problems

First, we start with problems that are globally observable and aim at proposing an algorithm with
regret O(n

2
3 ). In light of our previous derivation of Exp3 for adversarial MAB, it is natural to con-

sider applying Hedge again with some loss estimator. However, in partial monitoring, it is generally
impossible to directly estimate the loss itself — to see this, just consider the following globally
observable problem:

ℓ =

(
0 0.5 0.5 1
0.5 0 1 0.5

)
and Φ =

(
1 2 1 2
2 1 2 1

)
;

for example, if the learner observes 1 after playing the first action, then she knows the outcome must
be 1 or 3, but can never figure out which case it is (while the losses are drastically different in these
two cases).



However, note the following simple observation: for any reference action b, we have

Regn =

n∑
t=1

(ℓ(at, zt)− ℓ(b, zt))−
n∑

t=1

(ℓ(a⋆, zt)− ℓ(b, zt)).

Therefore, it is in fact sufficient to estimate only the loss difference instead of the loss itself, which
is now clearly possible in the previous example. More generally, recall that for a globally observable
partial monitoring problem, for every pair of Pareto-optimal actions a and b, there exists a function
vab : [K]× Σ → R such that

ℓ(a, z)− ℓ(b, z) =
∑

k∈[K]

vab(k,Φ(k, z)), ∀z ∈ [d], (1)

which suggests a natural importance-weighted estimator for ℓ(a, z)− ℓ(b, z). Specifically, suppose
that we sample action at from a distribution pt ∈ ∆(K). Upon seeing observation Φ(at, zt), we
can construct the loss (difference) estimator ℓ̂t = v(at,Φ(at,zt))

pt(at)
∈ RK , where we fix an arbitrary

reference Pareto-optimal action b and let v(·, ·) ∈ RK be a vector such that its a-th coordinate,
denoted as va(·, ·) (with a slight abuse of notation), is vab(·, ·) if a is Pareto-optimal, and arbitrary
otherwise. The reason that we do not care about estimating the loss (difference) for non Pareto-
optimal actions is because they can never be the optimal, which also suggests running the Hedge
algorithm over only the set of Pareto-optimal actions, denoted by A, to obtain qt ∈ ∆(K) with
qt(a) ∝ 1 {a ∈ A} exp

(
−η
∑

τ<t ℓ̂τ (a)
)

.

However, recall that only playing Pareto-optimal actions is generally a bad idea, since playing non
Pareto-optimal actions might be the only way to obtain useful information (recall the example of
binary classification with query cost c > 1/2). This means that pt cannot be simply qt. In fact, for
the estimator to be unbiased for any a ∈ A:

Et

[
ℓ̂t(a)

]
=

K∑
k=1

pt(k)
va(k,Φ(k, zt))

pt(k)
= ℓ(a, zt)− ℓ(b, zt), (2)

we generally require pt to have a full support. On the other hand, we certainly also do not want to
deviate from qt significantly and play non optimal actions too often. This motivate us to choose pt
to be a mix of qt and some small amount of uniform exploration: pt = (1 − γ)qt + γ 1

K (where 1
is the all-one vector), so that every action is selected with probability at least γ/K. The complete
algorithm is now shown below.

Algorithm 1: An algorithm for globally observable problems

Let b ∈ A be an arbitrary Pareto-optimal action and v(·, ·) ∈ RK be the vector with vab(·, ·)
being its a-th coordinate if a is Pareto-optimal and arbitrary otherwise.

Let γ ≤ 1 be the exploration parameter and η > 0 be the learning rate.
For t = 1, . . . , n:

1. Compute qt ∈ ∆(K) such that qt(a) ∝ 1 {a ∈ A} exp
(
−η
∑t−1

τ=1 ℓ̂τ (a)
)
.

2. Sample at ∼ pt = (1− γ)qt + γ 1
K and receive feedback Φ(at, zt).

3. Construct loss difference estimator ℓ̂t =
v(at,Φ(at,zt))

pt(at)
.

To analyze this algorithm, we first make use of the key Hedge lemma from Lecture 6 to derive the
following general regret bound that in fact holds for any pt:

Lemma 1. As long as ηℓ̂t(a) ≥ −1 for all t and a, Algorithm 1 ensures:

E [Regn] ≤
lnK

η
+ E

[
n∑

t=1

(DEVt + VARt)

]
,

where DEVt = (pt − qt)
⊤ℓezt measures the derivation of pt from qt, and VARt =

η
∑

a∈A
∑K

k=1
qt(a)
pt(k)

v2a(k,Φ(k, zt)) measures the variance of the loss estimator.
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Proof. Using the Hedge lemma and the fact a⋆ ∈ A, we have (as long as ηℓ̂t(a) ≥ −1)
n∑

t=1

〈
qt, ℓ̂t

〉
−

n∑
t=1

ℓ̂t(a
⋆) ≤ ln |A|

η
+ η

n∑
t=1

∑
a∈A

qt(a)ℓ̂
2
t (a). (3)

We have already shown the unbiasedness of ℓ̂t in Equation (2), and similarly its variance is bounded
as

Et

[
ℓ̂2t (a)

]
=

K∑
k=1

pt(k)
v2a(k,Φ(k, zt))

p2t (k)
=

K∑
k=1

v2a(k,Φ(k, zt))

pt(k)
.

Therefore, taking expectation on both sides of Equation (3) and noting that E [Regn] =
E
[∑n

t=1 p
⊤
t ℓezt −

∑n
t=1 ℓ(a

⋆, zt)
]

finishes the proof.

Next, we plug in the definition of pt to show the final regret bound.
Theorem 2. For any globally observable problems, Algorithm 1 ensures

E [Regn] ≤
lnK

η
+ γn+

ηnK2V 2

γ

as long as η ≤ γ
KV where V = maxk∈[K],σ∈Σ ∥v(k, σ)∥∞. Picking γ =

√
ηKV and η =

min
{
1,
(

lnK
nKV

) 2
3

}
gives E [Regn] = O

(
(nKV )

2
3 (lnK)

1
3

)
.

Proof. First note that ℓ̂t(a) ≥ −KV/γ and thus the condition ηℓ̂t(a) ≥ −1 of Lemma 1 holds when
η ≤ γ

KV . It thus suffices to bound DEVt and VARt: DEVt = (pt − qt)
⊤ℓezt ≤

γ
K1⊤ℓezt ≤ γ,

VARt = η
∑
a∈A

K∑
k=1

qt(a)

pt(k)
v2a(k,Φ(k, zt)) ≤ ηKV 2

∑
a∈A

K∑
k=1

qt(a)

γ
=

ηK2V 2

γ
.

Combining the bounds proves the theorem.

We have thus achieved our goal of showing O(n2/3) regret for any globally observable problems.
We conclude by pointing out that V is a problem-dependent constant and could in fact be exponen-
tially large in d, but for all examples discussed in the last lecture, V is simply O(1).

1.2 Locally observable problems

Our next goal is to achieve O(
√
n) regret for any locally observable problems. Recall that in such

problems, for every pair of neighboring actions a and b, we can find a function vab such that Equa-
tion (1) holds and additionally vab(k, ·) is zero for all k /∈ {a, b}. The hope is that using this property,
the variance term VARt in Lemma 1 can be improved from O( ηγ ) to just O(η) (which is then enough
to achieve O(

√
n) regret). However, it is unclear how to use this property directly since the idea of

Algorithm 1 requires using vab even when a and b are not neighbor. To get an idea of how to modify
Algorithm 1 to solve this problem, we will consider two examples below to convey three important
messages.

Message One: a better v is needed. The first example is a bandit problem with Φ = ℓ, which,
as discussed in the last lecture, is locally observable, since for any a, b ∈ A (that are not even
necessarily neighbors), we can set vab(a, σ) = σ, vab(b, σ) = −σ, and vab(k, σ) = 0 for all
k /∈ {a, b} so that Equation (1) holds. If we use such vab in Algorithm 1, notice that the variance
term is still not improved since

VARt = η
∑
a∈A

K∑
k=1

qt(a)

pt(k)
v2a(k,Φ(k, zt)) = η

∑
a∈A

∑
k∈{a,b}

qt(a)

pt(k)
v2a(k,Φ(k, zt))

can still be of order η/γ due to the term qt(a)/pt(b). However, we know that the problem can be
solved by Exp3, which basically also fits into the framework of Algorithm 1 with v(k, σ) = σ · ek.
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The estimator is unbiased in estimating the loss itself (instead of loss difference): Et[ℓ̂t(a)] =
ℓ(a, zt), and the variance is now drastically improved:

VARt = η
∑
a∈A

K∑
k=1

qt(a)

pt(k)
v2a(k,Φ(k, zt)) = η

∑
a∈A

qt(a)

pt(a)
Φ2(a, zt) ≤

Kη

1− γ
= O(Kη).

This example shows that it is not enough to only consider v(·, ·) that estimates loss difference be-
tween two actions. Instead, let us generalize the idea and look for v that estimates the loss of an
action compared to any constant, that is, a v from the following set

H =

{
v : [K]× Σ → RK

∣∣∣∣ ∀z ∈ [d],∃ξz ∈ R, s.t. ℓ(a, z)− ξz =

K∑
k=1

va(k,Φ(k, z)),∀a ∈ A

}
.

(4)
In Algorithm 1, we have used any v ∈ H such that ξz = ℓ(b, z) for some reference action b, while
in bandit, we used a v ∈ H such that ξz = 0. Note that if we equivalently see v as a vector in
space RK×|Σ|×K , then the set H is in fact a convex set defined by O(dK) linear constraints (more
specifically, for each z, we have |A| − 1 constraints specified by ℓ(a, z) −

∑K
k=1 va(k,Φ(k, z)) =

ℓ(b, z)−
∑K

k=1 vb(k,Φ(k, z)) = ℓ(c, z)−
∑K

k=1 vc(k,Φ(k, z)) = · · · , for a, b, c, . . . ∈ A.)

Message Two: a better pt is needed. Next, consider the example of binary classification with
query cost c < 1/2 (which is locally observable as discussed last time):

ℓ =

(
0 1
1 0
c c

)
and Φ =

(⊥ ⊥
⊥ ⊥
, /

)
. (5)

An obvious estimation function v ∈ H is: v(k, σ) = 1 {k = 3} (0, 1, c) if σ = , and
v(k, σ) = 1 {k = 3} (1, 0, c) if σ = / (that is, output 0 when playing the first two actions that
give no information, and the true loss when playing the third action that reveals all information).

Figure 1

The variance term would then be

VARt = η
∑
a∈A

K∑
k=1

qt(a)

pt(k)
v2a(k,Φ(k, zt)) = η

∑
a∈A

qt(a)

pt(3)
v2a(3,Φ(3, zt)) ≤

η

pt(3)
, (6)

which intuitively makes sense since action 3 is the only action that reveals information
and thus the less likely we pick this action, the higher the variance. Therefore, if we still
let pt be simply a mix of qt and a small amount of uniform exploration, the variance
would be of order η/γ again. However, now consider a different pt that is obtained
from qt by drastically increasing qt(3): move min {qt(1), qt(2)} weight from actions
1 and 2 to 3. For example, in the case where qt(2) ≤ qt(1), pt is defined as: pt(1) =
qt(1) − qt(2), pt(2) = 0, and pt(3) = qt(3) + 2qt(2); see Figure 1 for an illustration.
In this case, the variance term is improved, and more importantly, the deviation term
DEVt = (pt − qt)

⊤ℓezt is actually always negative since
(pt − qt)

⊤ℓ = (−qt(2),−qt(2), 2qt(2))ℓ = ((2c− 1)qt(2), (2c− 1)qt(2))

and c < 1/2, meaning that playing pt is guaranteed to suffer less loss than qt! This example
shows that by coming up with a more sophisticated pt (instead of simply mixing qt with uniform
exploration), it is possible to reduce both the deviation DEVt and the variance VARt simultaneously.

Message Three: a better combination of v and pt is needed. Even with this new pt, however, the
variance term η/pt(3) from Equation (6) can still be large if pt(3) = qt(3)+ 2qt(2) is too small. To
address this, consider a slightly different estimation function v ∈ H: v(k, σ) = 1 {k = 3} (0, 1, c)
if σ = , and v(k, σ) = 1 {k = 3} (0,−1, c−1) if σ = /, which is only different from the previous
choice by shifting the second case by −1 (and thus still in H by definition). The variance term then
becomes (using v21(3,Φ(3, zt)) = 0 always)

VARt = η
∑
a∈A

qt(a)

pt(3)
v2a(3,Φ(3, zt)) ≤

η(qt(2) + qt(3))

pt(3)
=

η(qt(2) + qt(3))

2qt(2) + qt(3)
≤ η,

which is much better than η/γ and leads to O(
√
n) regret in the end. Note that we have been

assuming qt(2) ≤ qt(1), and in the case qt(2) > qt(1), we will have to change v accordingly (that
is, shifting the first case by −1 now) to ensure VARt ≤ η. This conveys the important message that
we need to choose a good combination of v and pt depending on the value of qt.
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Exploration by optimization. With these examples in mind, it remains to figure out how to pick
a good combination of v ∈ H and pt based on qt. In fact, let us take this idea to the extreme and
ask: what is the best possible combination of v and pt? The quality of a combination can be simply
measured by DEVt + VARt, and thus the best combination is the solution to the following min-max
optimization problem (the maxzt part is due to the fact that zt is unknown before deciding pt):

OPTη(qt) = min
(v,pt)∈Ω

max
zt∈[d]

(DEVt + VARt)

= min
(v,pt)∈Ω

max
zt∈[d]

(
(pt − qt)

⊤ℓezt + η
∑
a∈A

K∑
k=1

qt(a)

pt(k)
v2a(k,Φ(k, zt))

)
,

(7)

where the decision space Ω is

Ω =

{
(v, p) ∈ H ×∆(K)

∣∣∣∣ ηva(k, σ) + p(k) ≥ 0,∀a ∈ A, k ∈ [K], σ ∈ Σ

}
, (8)

which is convex and ensures that the condition ηℓ̂t(a) ≥ −1 (from Lemma 1) always holds. While
seemingly complex, OPTη(qt) is in fact a convex optimization problem and can be solved using
any off-the-shelf convex solvers. This idea, called exploration by optimization, is first introduced
by Lattimore and Szepesvári [2020] (and turns out to be powerful for other problems as well). The
complete algorithm is now shown below.

Algorithm 2: Exploration by optimization for locally observable problems
Let η > 0 be the learning rate.
For t = 1, . . . , n:

1. Compute qt ∈ ∆(K) such that qt(a) ∝ 1 {a ∈ A} exp
(
−η
∑t−1

τ=1 ℓ̂τ (a)
)
.

2. Solve OPTη(qt) from Equation (7) to obtain v and pt.
3. Sample at ∼ pt and receive feedback Φ(at, zt).

4. Construct loss difference estimator ℓ̂t =
v(at,Φ(at,zt))

pt(at)
.

It turns out that we have OPTη(q) = O(η) for all locally observable problems:
Lemma 2. For any locally observable problem and q ∈ ∆(A), we have OPTη(q) = O(ηK3|Σ|2).1

This immediately implies the following regret bound using Lemma 1.
Theorem 3. For any locally observable problem, Algorithm 2 ensures E [Regn] ≤ lnK

η +

O(ηnK3|Σ|2), which is O(
√

nK3|Σ|2 lnK) after picking the optimal η.

Note that the bound has no dependence at all on the number of outcomes d. It also has no problem-
dependent constant such as V in Theorem 2 (that could be exponentially large). The proof of
Lemma 2 is somewhat involved, and we only discuss the key ideas below.

Proof sketch of Lemma 2. We drop all the subscripts t in this proof for conciseness. The first step
to bound OPTη(q) is to linearize the maxz part in order to apply the minimax theorem (similarly to
what we did in Lecture 5 to analyze V seq(F , n)):

OPTη(q) = min
(v,p)∈Ω

max
z∈[d]

(
(p− q)⊤ℓez + η

∑
a∈A

K∑
k=1

q(a)

p(k)
v2a(k,Φ(k, z))

)

= min
(v,p)∈Ω

max
u∈∆(d)

(
(p− q)⊤ℓu+ ηEi∼u

[∑
a∈A

K∑
k=1

q(a)

p(k)
v2a(k,Φ(k, i))

])

= max
u∈∆(d)

min
(v,p)∈Ω

(
(p− q)⊤ℓu︸ ︷︷ ︸

DEV

+ ηEi∼u

[∑
a∈A

K∑
k=1

q(a)

p(k)
v2a(k,Φ(k, i))︸ ︷︷ ︸

VAR

])
.

1More precisely, this bound holds for any locally observable problems that have no degenerate actions
(otherwise, OPTη(q) is still of order O(η) but with other problem-dependence constants).
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The advantage of swapping the role of the learner and the environment via the minimax theorem is
that it is now intuitively much clearer how to select a good combination of v and p. Indeed, given that
the environment is going to sample the outcome according to u ∈ ∆(d), we should naturally assign
more weight to the optimal action under u, that is, au ∈ argmina ⟨ℓa, u⟩. However, we should not
move too much weight from other actions to au either as it would likely increase the variance. To
achieve a good balance, we will define a tree with au as the root and other Pareto-optimal actions in
A as the rest of the nodes, and let the weight “flow” from the leaves to the root in a particular way.

More specifically, for each au ̸= a ∈ A, define its parent as par(a) = argmink∈Na
⟨ℓk, u⟩ where

Na contains a and all its neighbors. It can be verified that this leads to a well-defined tree (by using
the concavity of the function u → mina∈A ⟨ℓa, u⟩; try it yourself for the case with d = 2), where for
each node au ̸= a ∈ A, its parent par(a) must suffer less loss under u, that is, ⟨ℓa, u⟩ >

〈
ℓpar(a), u

〉
.

This means that if we transfer weight only from a node to its parent, the resulting new distribution
will only suffer less loss. In particular, starting from the given distribution q ∈ ∆(A), we will
transfer the weight in the following manner: for each note a ∈ A, suppose that it has m ancestors;
divide its weight q(a) equally into m+1 shares and move one share to each of its ancestor (keeping
one share for itself). This is best illustrated in the following figure, where the left picture represents
the original q supported on five actions, with the arrows below them pointing to their parents, and
the right picture represents the new distribution.

Figure 2 : An illustration of how to obtain r from q

Denote the new distribution as r ∈ ∆(A) after this process. The final distribution p is defined as
p = (1−γ)r+γ 1

K for some γ ∈ (0, 1/2], which again mixes r with a small amount of exploration.
This step is to ensure that the constraint in the definition of Ω (Equation (8)) is satisfied (see details
below). Since r is strictly better than q: (r − q)⊤ℓu < 0, the final distribution is only γ worse:
DEV = (p− q)⊤ℓu = (1− γ)(r − q)⊤ℓu+ γ( 1

K − q)⊤ℓu ≤ γ
K1⊤ℓu ≤ γ.

It remains to pick v and show that VAR is also well controlled. Similarly to Algorithm 1, we pick
v such that va is vab defined in Equation (1) where the reference function b is now set to the root
au. Additionally, we require this vab to be such that vab(k, σ) = 0 whenever k is not in path(a),
the set of nodes on the path from a to the root au. This is possible by the local observability and
the fact that every node and its parent are neighbors. In fact, it is also possible to make sure that the
magnitude of each vab(k, σ) is at most 2|Σ| (details omitted). With such an estimation function v,
we calculate the variance as∑

a∈A

K∑
k=1

q(a)

p(k)
v2a(k,Φ(k, i)) ≤ 4|Σ|2

∑
a∈A

∑
k∈path(a)

q(a)

p(k)
≤ 8|Σ|2

∑
a∈A

∑
k∈path(a)

q(a)

r(k)
,

where the last step is due to p(k) ≥ (1− γ)r(k) ≥ 1
2r(k). To continue, we use two important facts

based on the construction of r (c.f. Figure 2 again): 1) for any node k ∈ path(a), r(k) ≥ r(a) (since
every node gives an equal share to its ancestor); 2) for any node a ∈ A, r(a) ≥ q(a)/K (since every
node at least keeps one share of its original weight). Combining these, we continue with∑

a∈A

K∑
k=1

q(a)

p(k)
v2a(k,Φ(k, i)) ≤ 8|Σ|2

∑
a∈A

∑
k∈path(a)

q(a)

r(a)
≤ 8|Σ|2

∑
a∈A

∑
k∈path(a)

K ≤ 4K3|Σ|2,

which means VAR ≤ 8ηK3|Σ|2.

Combining the bounds for both DEV and VAR, we conclude OPTη(q) ≤ γ + 8ηK3|Σ|2. It remains
to pick γ, which, as mentioned earlier, is used to ensure the condition ηva(k, σ) + p(k) ≥ 0 in
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Equation (8). Since |va(k, σ)| ≤ 2|Σ| and p(k) ≥ γ/K, it suffices to pick γ = 2ηK|Σ|. This shows
OPTη(q) ≤ 2ηK|Σ|+ 8ηK3|Σ|2 = O(ηK3|Σ|2) and completes the entire proof.

We point out that the way we construct v and p in the proof above does not correspond to an actual
algorithm, since this is based on a known u ∈ ∆(d) (enabled by the minimax theorem). Instead, to
find v and pt in the algorithm, as mentioned, we need to solve the convex program Equation (7).

2 Partial Monitoring: Lower Bounds

Now that all upper bounds in the classification theorem have been proven, we move on to prove the
lower bounds. The first case is again trivial since the minimax regret of any problem is at least 0 (the
adversary just needs to stick with one particular outcome all the time). For the other three cases, it
is not difficult to find one instance where the corresponding lower bound holds. Indeed,

• for locally observable problems, just note that MAB is one such instance, where we proved
Ω(

√
nK) regret in the last lecture;

• for problems that are not even globally observable, we have discussed the hopeless game last time
where one needs to do binary classification under absolutely no feedback at all, so Ω(n) regret is
obvious;

• finally, for globally observable problems that are not locally observable, we can consider the
example of classification with query cost again, that is, Equation (5), this time with c > 1/2. A
simple informal argument below indicates the Ω(n2/3) lower bound: if the environment selects
one of the outcomes with probability 0.5+ϵ each time (and the other one with probability 0.5−ϵ),
then the learner either needs to query 1/ϵ2 times to figure out which outcome appears more often,
in which case she suffers (c− (0.5− ϵ))/ϵ2 = Ω(1/ϵ2) regret, or she does not query enough and
never figures out which one is better, in which case she suffers Ω(nϵ) regret. By setting ϵ = n− 1

3 ,
we thus know that in either case the regret is at least Ω(n

2
3 ).

However, the classification theorem says something more — it says that for every (not just one
particular) problem in each category, the corresponding regret lower bound holds. To formally
prove this stronger statement, we utilize similar ideas from the MAB lower bound proof.

Proof for lower bounds of Theorem 1. The idea is still to first construct a stochastic environment
where two actions a and b are equally good, identify the one that is selected less often by the algo-
rithm, and then construct another stochastic environment where this action becomes slightly better,
but it is hard for the algorithm to realize the change. Again, it is sufficient to consider deterministic
algorithms. Below, we first describe the common part of the proof for all three categories.

Let a and b be a pair of neighboring actions (we will specify which pair later for each category).
Consider an environment where the outcomes z1, . . . , zn are i.i.d. samples from a distribution u ∈
∆(d) that lies in the (relative) interior of Ca ∩ Cb (so by the definition of cells, a and b are both
optimal actions in this environment). For any fixed algorithm, let mk = E [

∑n
t=1 1 {at = k}] be the

expected total number of times action k is selected in this environment. Without loss of generality,
assume mb ≤ n/2 (note that one of ma and mb must be no more than n/2).

Next, consider a different environment where the outcomes z1, . . . , zn are i.i.d. samples from a
distribution u′ = u+ δ where δ satisfies

∑d
i=1 δ(i) = 0 and ⟨ℓa − ℓb, δ⟩ = ϵ for some small enough

ϵ > 0 such that u′ ∈ Cb (that is, action b is optimal under this new environment). Note that this
is always possible since the constraint

∑
i δ(i) = 0 defines a space that is orthogonal to the all-one

vector, and ℓa − ℓb cannot be in the same direction as the all-one vector for otherwise one of them
strictly dominates the other.

It remains to argue that the regret of the same algorithm under this environment has to be large.
Note that every time the algorithm selects action a, it incurs regret ⟨ℓa − ℓb, u

′⟩ = ⟨ℓa − ℓb, δ⟩ = ϵ;
and every time it selects an action k /∈ Nab = {a, b}, it incurs some constant regret which can be
assumed to be larger than c + ϵ for some constant c as long as ϵ is small enough. Therefore, the
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regret is

E′ [Regn] ≥ E

[
n∑

t=1

ℓ(at, zt)−
n∑

t=1

ℓ(b, zt)

]
≥ (n−m′

b)ϵ+ cm̄′

where E′ denotes the expectation in environment u′, m′
k = E′ [

∑n
t=1 1 {at = k}], and m̄′ =∑

k/∈Nab
m′

k.2 Now we relate mb and m′
b in a similar way as in the MAB lower bound proof:

m′
b ≤ mb + n ∥P− P′∥1 ≤ mb + n

√
2KL(P′ ∥ P)

where P and P′ are the distributions of the observation sequence Φ(a1, z1), . . . ,Φ(an, zn) in en-
vironment u and u′ respectively. Generalizing the divergence decomposition lemma (Lemma 3 of
Lecture 9), one can verify the following

KL(P′ ∥ P) =
K∑

k=1

m′(k)KL(P′
k ∥ Pk)

where Pk and P′
k are the distributions of Φ(k, z) when z is drawn from u and u′ respectively, which,

with our notation of signal matrix Sk, can be conveniently written as Sku and Sku
′. We next discuss

the three categories separately.

Locally observable problems. We bound KL(P′
k ∥ Pk) for any k as follows:

KL(P′
k ∥ Pk) = KL(Sku

′ ∥ Sku) ≤ KL(u′ ∥ u) ≤
d∑

i=1

(u(i)′ − u(i))2

u(i)
=

d∑
i=1

δ(i)2

u(i)
= O(ϵ2),

where the first inequality is by the data processing inequality and the second inequality is because
KL divergence is bounded by Chi-square distance. Therefore, we have m′

b ≤ mb + O (ϵn
√
n) ≤

n
2 +O (ϵn

√
n) , and thus

E′ [Regn] ≥ (n−m′
b)ϵ ≥

(n
2
−O

(
ϵn

√
n
))

ϵ,

which is Ω(
√
n) by setting ϵ = β/

√
n for some small enough constant β.

Non globally observable problems. In this case, we let a and b be a neighboring pair that is not
globally observable, and also let δ be orthogonal to rowspace(S[K]). Note that this is always possi-
ble: the condition ⟨ℓa − ℓb, δ⟩ = ϵ can be satisfied since by definition ℓa − ℓb /∈ rowspace(S[K]),
and the condition

∑
i δ(i) = 0 holds automatically since the all-one vector is in rowspace(S[K]). In

this construction, for every k we have
KL(P′

k ∥ Pk) = KL(Sku
′ ∥ Sku) = KL(Sku+ Skδ ∥ Sku) = KL(Sku ∥ Sku) = 0,

meaning that the observation distributions are exactly the same in the two environments, and thus
m′

b ≤ mb ≤ n/2. Therefore, E′ [Regn] ≥ (n−m′
b)ϵ ≥ nϵ

2 = Ω(n).

Globally (but not locally) observable problems. In this case, we let a and b be a neighboring
pair that is not locally observable, and let δ be orthogonal to rowspace(SNab

), which is also always
possible by the fact ℓa − ℓb /∈ rowspace(SNab

) and that the all-one vector is in SNab
. Therefore,

for k ∈ Nab, again we have KL(P′
k ∥ Pk) = KL(Sku + Skδ ∥ Sku) = KL(Sku ∥ Sku) = 0 (so

playing a or b is not able to distinguish between the two environments), and for k /∈ Nab, we use the
previous bound KL(P′

k ∥ Pk) = O
(
ϵ2
)
. Combing everything we have m′

b ≤ n/2 +O
(
nϵ

√
2m̄′

)
and

E′ [Regn] ≥ (n−m′
b)ϵ+ cm̄′ ≥ nϵ

2
−O

(
nϵ2

√
2m̄′

)
+ cm̄′ ≥ nϵ

2
−O

(
n2ϵ4

)
,

where the last step is by lower bounding the quadratic (in terms of
√
m̄′) by its minimum. Finally

setting ϵ = βn− 1
3 for some small enough constant β proves E′ [Regn] = Ω(n

2
3 ).
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