
CSCI 678: Theoretical Machine Learning
Lecture 2

Fall 2024, Instructor: Haipeng Luo

1 Uniform Convergence and Rademacher Complexity

In this lecture, we focus on studying the value V iid(F , n), which, as discussed last time, completely
characterizes the learnability of class F in the batch/statistical learning setting. We will perform a
sequence of upper bounding on this value to reach a much more manageable form, and in the end
argue that these upper bounds are very tight.

Recall that the value is defined as

V iid(F , n) = inf
π

sup
P

(
E [L(ŷ)]− inf

f∈F
L(f)

)
,

where π ranges over all (distributions of) mappings from n training samples to a final predictor
ŷ ∈ D, and P ranges over all data-generating distributions on Z . As the first step of relaxing this
value, we consider a very simple algorithm: output the Empirical Risk Minimizer (ERM):

ŷERM ∈ argmin
f∈F

1

n

n∑
t=1

ℓ(f, zt).

Here, the empirical risk simply refers to the average loss over the training set, and for simplicity
we assume that at least one such minimizer exists (which is basically without loss of generality).
Clearly, we now have

V iid(F , n) ≤ sup
P

(
E [L(ŷERM)]− inf

f∈F
L(f)

)
. (1)

Before further discussion, we make the following two remarks on ERM. First, finding an ERM is
a well-defined optimization problem, and there are many heavily-studied optimization algorithms
for this problem. As discussed last time, this optimization aspect is out of the scope of this course.
In general, finding an ERM could even be an NP-hard problem. However, here we only focus on
whether the problem is statistically (as opposed to computationally) learnable.

Second, one might wonder why we should focus on this somewhat “naive” algorithm, or more
specifically, why is there no “regularization” as we know that minimizing training loss alone might
lead to overfitting in practice. The answer is that for many problems, a regularized ERM, that is,
argminf∈F

1
n

∑n
t=1 ℓ(f, zt) + λΨ(f) for some regularizer Ψ and constant λ, is equivalent to the

ERM over a smaller class: argminf∈F,Ψ(f)≤c
1
n

∑n
t=1 ℓ(f, zt) for some other constant c. So regu-

larization is really just a way to implicitly learn over a restricted class that hopefully is statistically
easier to learn.



1.1 Empirical process and uniform convergence

Next, we further simplify Equation (1). Let f⋆ ∈ argminf∈F L(f).1 We have

V iid(F , n) ≤ sup
P

(E [L(ŷERM)]− L(f⋆))

= sup
P

E

[
L(ŷERM)− 1

n

n∑
t=1

ℓ(f⋆, zt)

]
(by definition of L)

≤ sup
P

E

[
L(ŷERM)− 1

n

n∑
t=1

ℓ(ŷERM, zt)

]
(by definition of ŷERM)

≤ sup
P

E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

ℓ(f, zt)

)]
. (2)

Here, the collection of random variables L(f)− 1
n

∑n
t=1 ℓ(f, zt) indexed by f is called an empirical

process. Each of these random variables is nothing but the difference between the expected value of
f on a random input drawn from P and its empirical average value on a set of i.i.d. inputs drawn
from the same distribution. Clearly, these random variables are all zero-mean and each should be
small when n is large, by the law of large numbers. However, in order to claim that Equation (2) is
small, in some sense we have to argue that these random variables are all small simultaneously, and
whether this is true will depend on the class F . We say that F satisfies uniform convergence if

lim sup
n→∞

sup
P

E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

ℓ(f, zt)

)]
= 0,

that is, for any data-generating distribution, the expected supremum of the empirical process is
arbitrarily small as long as n is large enough. By Equation (2), it is clear that if uniform convergence
holds for F , then F is learnable.

1.2 Symmetrization and Rademacher Complexity

For a given class F , how do we know if the expected supremum of the empirical process is small or
not? To answer this question, we will further relax this quantity via an important technique called
symmetrization, and arrive at something called Rademacher complexity. To this end, we first define
a Rademacher random variable ϵ as a random variable that takes on values −1 and +1 with equal
probability. For a class of functions H ⊂ RZ , and a sequence of arbitrary inputs z1, . . . , zn, define
the conditional Rademacher complexity of H on these inputs as

R̂iid(H; z1:n) =
1

n
Eϵ1:n

[
sup
h∈H

n∑
t=1

ϵth(zt)

]
,

where ϵ1:n are n i.i.d. Rademacher random variables. The (unconditional) Rademacher complexity
of H with respect to a distribution P supported on Z is defined as

Riid(H) = Ez1:n

[
R̂iid(H; z1:n)

]
=

1

n
Ez1:n,ϵ1:n

[
sup
h∈H

n∑
t=1

ϵth(zt)

]
where z1:n are n i.i.d. samples of P . At a high level, the Rademacher complexity of a class measures
how well it can fit random signs, because the correlation ϵth(zt) is large when h(zt) is of the same
sign as ϵt. Therefore, the larger the Rademacher complexity, the more expressive the class is.

The connection between the Rademacher complexity and the expected supremum of an empirical
process is summarized in the following theorem.
Theorem 1. For any data-generating distribution P and any class F , we have

E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

ℓ(f, zt)

)]
≤ 2Riid(ℓ(F)),

where ℓ(F) =
{
hf ∈ RZ : f ∈ F , hf (z) = ℓ(f, z),∀z

}
.

1For simplicity, we will ignore the issue that argmin might not exist (which can be handled easily).
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Proof. By definition, we write L(f) as Ez′
1,...,z

′
n∼P

[
1
n

∑n
t=1 ℓ(f, z

′
t)
]

and arrive at

Ez1:n

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

ℓ(f, zt)

)]
=

1

n
Ez1:n

[
sup
f∈F

Ez′
1:n

[
n∑

t=1

(ℓ(f, z′t)− ℓ(f, zt))

]]
Pulling the expectation Ez′

1:n
out of the sup leads to the following upper bound (that is symmetric):

1

n
Ez1:n

[
sup
f∈F

Ez′
1:n

[
n∑

t=1

(ℓ(f, z′t)− ℓ(f, zt))

]]
≤ 1

n
Ez1:n,z′

1:n

[
sup
f∈F

n∑
t=1

(ℓ(f, z′t)− ℓ(f, zt))

]
.

Next we claim the following equality:

Ez1:n,z′
1:n

[
sup
f∈F

n∑
t=1

(ℓ(f, z′t)− ℓ(f, zt))

]
= Ez1:n,z′

1:n,ϵ1:n

[
sup
f∈F

n∑
t=1

ϵt (ℓ(f, z
′
t)− ℓ(f, zt))

]
.

This is true because for each possible value of the sequence ϵ1:n ∈ {−1,+1}n, the difference
between

∑n
t=1 (ℓ(f, z

′
t)− ℓ(f, zt)) and

∑n
t=1 ϵt (ℓ(f, z

′
t)− ℓ(f, zt)) is simply that we switch the

two examples zt and z′t whenever ϵt = −1, and this makes no difference in expectation since zt and
z′t follow the same distribution. Splitting the “sup” into two parts then further leads to the following
upper bound:

Ez1:n,z′
1:n,ϵ1:n

[
sup
f∈F

n∑
t=1

ϵt (ℓ(f, z
′
t)− ℓ(f, zt))

]

≤ Ez1:n,z′
1:n,ϵ1:n

[
sup
f∈F

n∑
t=1

ϵtℓ(f, z
′
t) + sup

f∈F

n∑
t=1

−ϵtℓ(f, zt)

]

= Ez′
1:n,ϵ1:n

[
sup
f∈F

n∑
t=1

ϵtℓ(f, z
′
t)

]
+ Ez1:n,ϵ1:n

[
sup
f∈F

n∑
t=1

−ϵtℓ(f, zt)

]
.

Finally, noting that ϵt and −ϵt have the same distribution so the two terms above are both exactly
nRiid(ℓ(F)) finishes the proof.

1.3 Erasing the loss for supervised learning

For many problems, especially those for supervised learning, it turns out that when analyzing the
Rademacher complexity of the class ℓ(F), the part about the loss function is in fact not that important
and can usually be removed. Specifically, consider a supervised learning problem with Z = X ×Y
and F ⊂ YX . In the following two cases, we can easily relate Riid(ℓ(F)) and Riid(F).

Lemma 1. For a binary classification problem with Y = {−1,+1} and 0-1 loss, one has
R̂iid(ℓ(F); z1:n) =

1
2R̂

iid(F ;x1:n) for any sequence z1:n, and thus Riid(ℓ(F)) = 1
2R

iid(F).

Proof. By definition, we have

R̂iid(ℓ(F); z1:n) =
1

n
E

[
sup
f∈F

n∑
t=1

ϵtI{f(xt) ̸= yt}

]
=

1

n
E

[
sup
f∈F

n∑
t=1

ϵt
1− ytf(xt)

2

]

=
1

2n
E

[
n∑

t=1

ϵt

]
+

1

2n
E

[
sup
f∈F

n∑
t=1

−ϵtytf(xt)

]
=

1

2
R̂iid(F ;x1:n),

where the last step uses the fact that Rademacher variables are zero-mean and that for any labels
y1, . . . , yn, −ϵ1y1, . . . ,−ϵnyn are again i.i.d. Rademacher random variables.

Lemma 2 (Contraction lemma). For a regression problem with Y ⊂ R and loss ℓ(f, (x, y)) =
ℓ′(f(x), y) for some loss ℓ′(y′, y) that is G-Lipschitz in the first parameter (that is, |ℓ′(y1, y) −
ℓ′(y2, y)| ≤ G|y1 − y2| for any y1, y2 and y), one has R̂iid(ℓ(F); z1:n) ≤ GR̂iid(F ;x1:n) for any
sequence z1:n, and thus Riid(ℓ(F)) ≤ GRiid(F).
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Proof. By definition, we have

R̂iid(ℓ(F); z1:n) =
1

n
E

[
sup
f∈F

n∑
t=1

ϵtℓ
′(f(xt), yt)

]

=
1

2n
E

[
sup
f∈F

n−1∑
t=1

(ϵtℓ
′(f(xt), yt) + ℓ′(f(xn), yn))

]
+

1

2n
E

[
sup
g∈F

n−1∑
t=1

(ϵtℓ
′(g(xt), yt)− ℓ′(g(xn), yn))

]

=
1

2n
E

[
sup

f,g∈F

n−1∑
t=1

(ϵt(ℓ
′(f(xt), yt) + ϵtℓ

′(g(xt), yt) + ℓ′(f(xn), yn)− ℓ′(g(xn), yn))

]

≤ 1

2n
E

[
sup

f,g∈F

n−1∑
t=1

(ϵt(ℓ
′(f(xt), yt) + ϵtℓ

′(g(xt), yt) +G|f(xn)− g(xn)|)

]

where the last step uses the G-Lipschitzness of ℓ′. By symmetry, removing the the absolute value in
the last expression in fact makes no difference. Splitting the “sup” again we thus arrive at:

R̂iid(ℓ(F); z1:n) ≤
1

2n
E

[
sup

f,g∈F

n−1∑
t=1

(ϵt(ℓ
′(f(xt), yt) + ϵtℓ

′(g(xt), yt) +Gf(xn)−Gg(xn))

]

=
1

2n
E

[
sup
f∈F

n−1∑
t=1

(ϵtℓ
′(f(xt), yt) +Gf(xn))

]
+

1

2n
E

[
sup
g∈F

n−1∑
t=1

(ϵtℓ
′(g(xt), yt)−Gg(xn))

]

=
1

n
E

[
sup
f∈F

n−1∑
t=1

ϵtℓ
′(f(xt), yt) + ϵnGf(xn)

]
.

Keep doing this for t = n− 1, . . . , 1 finishes the proof.

Note that Lipschitzness is usually satisfied for common problems. Take square loss ℓ′(y′, y) =
(y′ − y)2 as an example. If Y = [−1,+1] then it is clear that the loss is 4-Lipschitz.

2 Finite Class

Let’s make a quick summary at this point. By a sequence of upper bounding, we relax the value of
a statistical learning problem to the Rademacher complexity of the class:

V iid(F , n) ≤ sup
P

(
E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

ℓ(f, zt)

)])
≤ 2 sup

P
Riid(ℓ(F)) ≤ 2G sup

P
Riid(F)

where G is 1/2 for a binary classification problem or the Lipschitz constant for the regression loss.
It is now clear that understanding the Rademacher complexity of a class is critical in understanding
the learnability of a problem. So how do we calculate the Rademacher complexity Riid(F)?

We start with a simple yet fundamental case: when F is finite. All subsequent discussions on
infinite classes will eventually make use of the results for finite classes. The key lemma we need is
the following so-called maximal inequality for sub-Gaussian random variables. Recall that a zero-
mean random variable U is σ-sub-Gaussian if E [exp(λU)] ≤ exp(σ2λ2/2) for all λ > 0, that is,
its moment generating function is bounded by that of a zero-mean Gaussian with variance σ2. For
example, any zero-mean random variable with range [a, b] is b−a

2 -sub-Gaussian (this is the so-called
Hoeffding’s lemma).

Lemma 3 (Maximal Inequality). Suppose {Uf}f∈F is a finite collection of σ-sub-Gaussian random
variables. Then we have

E
[
max
f∈F

Uf

]
≤ σ

√
2 ln |F|.
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Proof. For any λ > 0, we have

exp

(
λE
[
max
f∈F

Uf

])
≤ E

[
exp

(
λmax

f∈F
Uf

)]
(Jensen’s inequality)

≤ E

∑
f∈F

exp (λUf )


≤
∑
f∈F

exp
(
σ2λ2/2

)
(Uf is σ-sub-Gaussian)

= |F| exp
(
σ2λ2/2

)
.

Rearranging gives E [maxf∈F Uf ] ≤ ln |F|
λ + σ2λ

2 , which is σ
√

2 ln |F| by setting λ =
√
2 ln |F|/σ

(this choice of λ minimizes the upper bound).

Next we apply this maximal inequality to bound the Rademacher complexity for a finite class.
Theorem 2 (Massart’s Lemma). Let F ⊂ YX be a finite class, and x1, . . . , xn ∈ X be an arbitrary
set of inputs. We have

R̂iid(F ;x1:n) ≤
1

n

√√√√2

(
max
f∈F

n∑
t=1

f2(xt)

)
ln |F|.

Consequently, if Y ⊂ [−C,C] for some C > 0, then Riid(F) ≤ C
√

2 ln |F|
n .

Proof. Note that R̂iid(F ;x1:n) = 1
nE [maxf∈F Uf ] where Uf =

∑n
t=1 ϵtf(xt). The following

calculation shows that Uf is σ-sub-Gaussian with σ = maxf∈F
√∑n

t=1 f
2(xt): for any λ > 0

E [exp(λUf )] = Πn
t=1E [exp(λϵtf(xt))] ≤ Πn

t=1 exp
(
f2(xt)λ

2/2
)

= exp

((
n∑

t=1

f2(xt)

)
λ2/2

)
≤ exp

(
σ2λ2/2

)
,

where the first step uses the fact that ϵ1, . . . , ϵn are independent, and the second step uses the fact
that ϵtf(xt) is |f(xt)|-sub-Gaussian. Applying Lemma 3 then finishes the proof.

The theorem above implies that finite classes with bounded value in [−C,C] are all learnable since

V iid(F , n) ≤ 2G supP Riid(F) ≤ 2GC
√

2 ln |F|
n → 0 as n goes to infinity. In fact, it also tells

us the exact convergence rate (1/
√
n) when we learn via an ERM. One might notice that the same

conclusion can be reached by applying the maximal inequality directly to the empirical process
(E
[
supf∈F

(
L(f)− 1

n

∑n
t=1 ℓ(f, zt)

)]
), but very soon we will see why it is important to do so on

the Rademacher complexity instead.

3 Infinite Class: Classification

We next move on to study the Rademacher complexity of infinite classes. As the first step, we
consider binary classification problems with Y = {−1,+1}. While Lemma 3 is seemingly not
useful for infinite classes, it in fact also plays a key role here. The main observation is the following:
the conditional Rademacher complexity can be equivalently written as

R̂iid(F ;x1:n) =
1

n
E

[
sup
f∈F

n∑
t=1

ϵtf(xt)

]
=

1

n
E

[
max

v∈F|x1:n

n∑
t=1

ϵtvt

]
where F|x1:n = {(f(x1), · · · , f(xn)) | f ∈ F} ⊂ {−1,+1}n is the projection of F onto the input
set x1:n. While F is infinite, F|x1:n on the other hand is always finite! In particular, its size is never
larger than 2n. Based on this intuition, we define the growth function of a class F for n inputs as

ΠF (n) = max
x1:n

∣∣F|x1:n

∣∣,
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which is the maximum number of labeling one can possibly obtain using functions from F for n
samples. Based on the previous observation and Lemma 3, we immediately have

Riid(F) ≤
√

2 lnΠF (n)

n
.

As mentioned, a trivial upper bound on the growth function ΠF (n) is 2n, which, when plugged into
the bound above, leads to a constant Rademacher complexity. Therefore, to hope for a vanishing
Rademacher complexity, we require the class to have a much milder growth function. Below, we
discuss two such examples.

Proposition 1. Consider X = R and F =

{
fθ(x) =

{
+1 if x ≤ θ

−1 else

∣∣∣∣ θ ∈ R
}

is the set of thresh-

old functions. Then ΠF (n) = n+ 1 and thus V iid(F , n) ≤
√

2 ln(n+1)
n .

Proof. For any θ, fθ(x) classifies all the points to the left of θ as +1 and all the points to the right as
−1. Clearly, for any n distinct points on the real line, all the n+ 1 possible labelings are (from left
to right): {−1,−1, . . . ,−1} , {+1,−1, . . . ,−1} , {+1,+1, . . . ,−1} , · · · , {+1,+1, . . . ,+1}.

Proposition 2. Consider X = R and F =

{
fθ1,θ2(x) =

{
+1 if θ1 ≤ x ≤ θ2
−1 else

∣∣∣∣ θ1 ≤ θ2

}
is the

set of interval functions. Then ΠF (n) =
(
n+1
2

)
+ 1 = O(n2) and thus V iid(F , n) ≤ O

(√
lnn
n

)
.

Proof. Any n distinct points divide the real line into n + 1 regions. Putting the interval endpoints
θ1 and θ2 into any two of these regions gives

(
n+1
2

)
labelings. Putting the interval endpoints into the

same region (any one of them) will give one extra labeling with all −1 labels.

We remark that while the step of replacing supf∈F with maxv∈F|x1:n
in the definition of

Rademacher complexity is very intuitive and straightforward, one in fact cannot do the same thing
directly for V iid(F , n) or its upper bound E

[
supf∈F

(
L(f)− 1

n

∑n
t=1 ℓ(f, zt)

)]
, because the term

L(f) depends on f not just through the values f(x1), . . . , f(xn). This highlights the importance
of relaxing these quantities to the Rademacher complexity via symmetrization, and why we did not
directly apply the maximal inequality to the empirical process for a finite class.

3.1 VC dimension and Sauer’s lemma

While the growth function is a nice way to characterize the complexity of a class, it is not always
easy to compute. To see this, consider an example where X = Rd for some dimension d and

F =
{
fθ,b(x) = sign (⟨x, θ⟩+ b) | θ ∈ Rd, b ∈ R

}
(3)

is the set of linear classifiers (sign(y) is +1 if y ≥ 0 and −1 otherwise). What is ΠF (n) in this
case? For simplicity let’s start from d = 2. It is pretty clear that for any n ≤ 3, one can find n
points so that F realizes all the possible 2n labelings, and thus we know ΠF (n) = 2n for n ≤ 3.
What about n = 4? Well, first we know ΠF (4) < 2n because for any four points in a 2D plane, it
is impossible for linear classifiers to realize all the 16 possible labelings (try to convince yourself).
But what exactly is the value of ΠF (4)? After spending some time you probably can figure this out
as well. But what about ΠF (5), ΠF (6), and more generally ΠF (n) for an arbitrary n? Do we need
to figure out all these values, which appears to be a tedious process?

Somewhat surprisingly, it turns out that the two facts we mentioned above: ΠF (3) = 23 and
ΠF (4) < 24, are already enough to derive a pretty tight upper bound on ΠF (n) for an arbitrary
n! To show this result, we first make a few definitions. We say that F shatters a set of inputs
x1:n if F|x1:n

= {−1,+1}n, that is, F realizes all the 2n possible labelings of this set. The Vap-
nik–Chervonenkis (VC) dimension of F is defined as the size of the largest input set that can be
shattered by F , that is,

VCdim(F) = max {n : ΠF (n) = 2n} .
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If the set is empty, then VCdim(F) is defined as 0; and if the set is not finite (so ΠF (n) = 2n for all
n), VCdim(F) is defined as ∞. As an example, the VC-dimension of the 2D linear classifiers dis-
cussed above is 3. The following seminal result connects the growth function and the VC-dimension
of a class (proof is deferred to the next subsection).
Lemma 4 (Sauer’s lemma). For a class F with finite VC-dimension d, one has for any n > d

ΠF (n) ≤
d∑

i=0

(
n

i

)
≤
(en
d

)d
.

By the definition of VC-dimension, we clearly have ΠF (n) = 2n for any n ≤ d. What Sauer’s
lemma shows is that once n becomes larger than d, there is a phase transition and the exponential
growth (2n) for the growth function suddenly becomes a polynomial growth (roughly nd)! Combing
with the previous discussion, we thus have

Riid(F) ≤
√

2 lnΠF (n)

n
≤

√
2d ln

(
en
d

)
n

,

implying that a class with finite VC-dimension is always learnable.

We emphasize that to prove VCdim(F) = d, one needs to show exactly two things: 1) ΠF (d) = 2d,
that is, provide a concrete set of inputs of size d and prove that F realizes all possible labelings
on this set; and 2) ΠF (d + 1) < 2d+1, that is, prove that for any input set of size d + 1, there
exists a labeling that is not achievable by F . This is often easier to do compared to finding the
growth function for any n, as we already see for the linear classifier example. Below are a few more
examples.
Proposition 3. A class has VC-dimension 0 if and only if it contains only one function.
Proposition 4. The threshold function class defined in Proposition 1 has VC-dimension 1.
Proposition 5. The interval function class defined in Proposition 2 has VC-dimension 2.

You should be able to prove these statements without too much difficulty. For threshold and interval
function class, we figured out the exact growth function earlier, and one can see that the upper bound
given by Sauer’s lemma is very tight.
Proposition 6. The linear classifier class defined in Equation (3) has VC-dimension d+ 1.

We have proved this statement for d = 2 in earlier discussion. Proving the general case will be in
HW 1. By now, you might notice that the VC-dimension often matches the number of parameters
of the class. Indeed, this often serves as a quick (and most of the time, accurate) guess on the VC-
dimension. This is, however, not always correct, as shown in the following example where a class
with a single parameter has infinite VC-dimension. The intuition is that by picking a large enough
θ, the function sin(θx) can wiggle arbitrarily often within a small interval (see HW1).
Proposition 7. Let X = R and F = {fθ(x) = sign(sin(θx)) | θ ∈ R}. Then VCdim(F) = ∞.

3.2 Proof of Sauer’s lemma

Proof. We prove the statement ΠF (n) ≤ g(d, n) =
∑d

i=0

(
n
i

)
for n > d by induction on the value

of d + n. The base case d + n = 1 is trivial: the only possible configuration is d = 0 and n = 1,
and in this case ΠF (n) = 1 = g(0, 1). Next we assume that the statement holds for any n′ > d′

such that n′ + d′ < n+ d, and prove ΠF (n) ≤ g(d, n). The case when d = 0 is again trivial, so we
assume n > d > 0. For any set of distinct inputs x1:n, let F1 = F|x2:n

be the projection of F onto
the n− 1 inputs x2:n and F2 ⊂ F1 be such that

F2 = {v ∈ F1 | (−1, v), (+1, v) ∈ F|x1:n} ,
that is, for any labeling in F2 for x2:n, adding x1 with either label leads to a labeling of x1:n that can
be realized by F . It is clear that ∣∣F|x1:n

∣∣ = |F1|+ |F2|.
Now, we see F1 and F2 as two function classes defined only on x2:n (so a function is just a vector
in {−1,+1}n−1). Then clearly we have

|F1| =
∣∣F1|x2:n

∣∣ ≤ ΠF1
(n− 1) ≤ g(d, n− 1),
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where the last step uses the inductive hypothesis and the fact the F1 cannot have VC-dimension
larger than that of F . On the other hand, we also have

|F2| =
∣∣F2|x2:n

∣∣ ≤ ΠF2(n− 1) ≤ g(d− 1, n− 1),

where the last step uses the inductive hypothesis and the fact the F2 has VC-dimension at most d−1,
since otherwise, there exists a subset of x2:n of size d that can be shattered by F2, and adding x1

to this subset leads to a set of size d + 1 that can be shattered by F due to the construction of F2,
which is a contradiction to the condition VCdim(F) = d. Together this implies∣∣F|x1:n

∣∣ ≤ g(d, n− 1) + g(d− 1, n− 1)

=

d∑
i=0

(
n− 1

i

)
+

d−1∑
i=0

(
n− 1

i

)

=

d∑
i=0

(
n− 1

i

)
+

d∑
i=1

(
n− 1

i− 1

)

=

d∑
i=0

(
n

i

)
= g(d, n).

Since this holds for any x1:n, we thus have ΠF (n) ≤ g(d, n), finishing the inductive proof. The
second statement of the inequality holds because

g(d, n) =
(n
d

)d d∑
i=0

(
d

n

)d(
n

i

)
≤
(n
d

)d d∑
i=0

(
d

n

)i(
n

i

)
(d < n)

≤
(n
d

)d n∑
i=0

(
d

n

)i(
n

i

)
=
(n
d

)d(
1 +

d

n

)n

≤
(en
d

)d
. (1 + x ≤ ex, ∀x ∈ R)

4 Summary and Closing the Loop

This lecture can be summarized by the following sequence of upper bounding:

V iid(F , n) ≤ sup
P

(
E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

ℓ(f, zt)

)])
(using ERM)

≤ 2 sup
P

Riid(ℓ(F)) (symmetrization)

≤ 2G sup
P

Riid(F) (erasing the loss)

≤

2GC
√

2 ln |F|
n (finite class)√

2 lnΠF (n)
n ≤

√
2d ln( en

d )
n , (binary classification)

where again G is 1/2 for a binary classification problem or the Lipschitz constant for the regression
loss, C is a bound on the magnitude of the function value, and d = VCdim(F). In the end, we found
that for binary classification, having a finite VC-dimension is a sufficient condition for learnability,
but is it also necessary, or in other words, is this sequence of upper bounding tight enough?

The answer is yes: a finite VC-dimension is also necessary for learnability, so we basically have
a closed loop. Indeed, if a class F has an infinite VC-dimension, then for any n, we can find a
subset X ′ ⊂ X with 2n elements shattered by F , that is, F behaves the same as YX ′

on this set.
Therefore, by the exact same argument of the no free lunch theorem discussed in Lecture 1, for any
algorithm one can find a distribution P supported on X ′ × Y such that it suffers excess risk at least
1/4, implying that F is not learnable.

Note that this also implies that if a class is learnable (for a binary classification problem), then it
must be learnable via the simple ERM algorithm. As a final remark, we mention (without going into
details) that this is not always the case for general statistical learning.
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