
CSCI 678: Theoretical Machine Learning
Lecture 3

Fall 2024, Instructor: Haipeng Luo

1 Infinite Class: Regression

In this lecture, we continue to focus on characterizing the learnability of statistical learning. Recall
that in the last lecture, by a sequence of upper bounding we arrived at

V iid(F , n) ≤ sup
P

(
E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

ℓ(f, zt)

)])
(using ERM)

≤ 2 sup
P

Riid(ℓ(F)) (symmetrization)

≤ 2G sup
P

Riid(F) (erasing the loss)

where G is 1/2 for a binary classification problem or the Lipschitz constant for the regres-
sion loss. For a finite class with bounded value in [−C,C], we apply maximal inequal-

ity to show supP Riid(F) ≤ C
√

2 ln |F|
n . Based on this result, we further discussed that

for a binary classification problem (Y = {−1,+1}), since only the projection F|x1:n
=

{(f(x1), · · · , f(xn)) | f ∈ F} ⊂ {−1,+1}n matters, one can reduce the infinite case to the fi-
nite case by introducing growth function and VC-dimension of a class. Specifically we proved with
d = VCdim(F),

sup
P

Riid(F) ≤
√

2 lnΠF (n)

n
≤

√
2d ln

(
en
d

)
n

.

In this lecture, we turn our focus to regression problems with a real-valued function class. With-
out loss of generality, we assume that the output is normalized so that Y = [−1,+1] and
F ⊂ [−1,+1]X . It is clear that the key is still to understand the Rademacher complexity Riid(F).
However, since F is a real-valued class, the projection F|x1:n ⊂ [−1,+1]n is generally also an
infinite set and we cannot directly apply the finite case result.

A somewhat natural idea to fix this issue is to approximate the infinite class by a finite discretization.
There are different possible ways to do this, and we discuss two below.

1.1 Covering functions

The first idea is to come up with a finite function class H so that for any f ∈ F , there is a corre-
sponding representative h ∈ H that is close to f . The closeness could be measured by for example
supx∈X |f(x)− h(x)|. Based on this intuition, we define a pointwise α-cover of F as a finite class
H ⊂ [−1,+1]X such that for any f ∈ F , there exists h ∈ H such that |f(x) − h(x)| ≤ α for all
x ∈ X , and the pointwise α-covering number of F as

N (F , α) = min {|H| | H is a pointwise α-cover of F} .
(or infinity if there is no such finite cover). Clearly, N (F , α) is non-increasing in α. With this
definition, we can once again reduce the infinite case to the finite case and immediately derive the
following result:



Theorem 1. For any F ⊂ [−1,+1]X , we have

Riid(F) ≤ min
α≥0

(
α+

√
2 lnN (F , α)

n

)
.

Proof. Fix any α ≥ 0. Let H be a pointwise α-cover of F with size N (F , α) and hf ∈ H be the
“representative” of f ∈ F such that supx |f(x)− hf (x)| ≤ α. We then have

Riid(F) =
1

n
E

[
sup
f∈F

n∑
t=1

ϵtf(xt)

]
=

1

n
E

[
sup
f∈F

n∑
t=1

ϵt(f(xt)− hf (xt) + hf (xt))

]

≤ 1

n
E

[
sup
f∈F

n∑
t=1

ϵt(f(xt)− hf (xt))

]
+

1

n
E

[
sup
f∈F

n∑
t=1

ϵthf (xt)

]

≤ 1

n
E

[
sup
f∈F

n∑
t=1

|f(xt)− hf (xt)|

]
+

1

n
E

[
sup
h∈H

n∑
t=1

ϵth(xt)

]

≤ α+Riid(H) ≤ α+

√
2 lnN (F , α)

n
. (Massart’s lemma)

Since this holds for any α ≥ 0, the theorem follows.

Naturally, the bound exhibits some trade-off between the approximation scale α and the size of the
cover. How large can the pointwise covering number be? Let’s first consider a linear case, where
X = Bd

q and F =
{
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

p

}
for some p ≥ 1 and q ≥ 1 such that 1

p + 1
q = 1.

Here Bd
p =

{
x ∈ Rd

∣∣ ∥x∥p ≤ 1
}

is the d-dimensional p-norm unit ball. The condition 1
p + 1

q = 1

makes ∥·∥p the dual norm of ∥·∥q (and vice versa), and this ensures that |fθ(x)| = | ⟨θ, x⟩ | ≤
∥θ∥q ∥x∥p ≤ 1 by Hölder inequality. This captures many common problems such as (regularized)
linear regression. We first see how large the pointwise covering number is when p = ∞ (and thus
q = 1).

Proposition 1. For X = Bd
1 and F =

{
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

∞
}

, we have N (F , α) ≤
(
1
α

)d
for

any 0 ≤ α ≤ 1 and Riid(F) = O
(√

d ln(n
d )

n

)
whenever n ≥ d.

Proof. Note that Bd
∞ is simply a d-dimensional hypercube with edge length 2. Fix any 0 ≤ α ≤ 1.

We discretize this hypercube “evenly” into
(
1
α

)d
disjoint small hypercubes with edge length 2α,1

and define H ⊂ F as a set of linear functions parametrized by the centers of these small hypercubes.
Clearly, H is a pointwise α-cover of F , since for any fθ ∈ F , if we let θ′ be the center of the small
hypercube that θ lies in and hθ′ ∈ H be the corresponding linear function, then for any x ∈ Bd

1 we
have |fθ(x) − hθ′(x)| = | ⟨θ − θ′, x⟩ | ≤ ∥θ − θ′∥∞ ∥x∥1 ≤ α. This concludes the first statement.
The second statement is by applying Theorem 1 and setting α =

√
d/n.

This implies that the linear class above is learnable (via ERM with rate roughly
√
d/n). For a

general value of p, it is easy to see that Bd
p ⊂ Bd

∞. So if we use the same class H constructed in the
proof of Proposition 1 as a pointwise cover, we can show that for any fθ and its representative hθ′ ,
one has for any x ∈ Bd

q

|fθ(x)− hθ′(x)| = | ⟨θ − θ′, x⟩ | ≤ ∥θ − θ′∥p ∥x∥q ≤ d
1
p ∥θ − θ′∥∞ ≤ d

1
pα,

which means that H is a pointwise d
1
pα-cover and consequentially the pointwise covering number

is bounded as N (F , α) ≤
(

d
1
p

α

)d

. So the linear class is learnable for any value of p.

1Technically,
(

1
α

)d should be ⌈ 1
α
⌉d. We ignore this subtlety since it makes no real difference.
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However, when dealing with the p-norm ball Bd
p , intuitively we should also discretize it into small

p-norm balls instead of small hypercubes, and this might lead to a smaller cover. This is indeed
true as shown in the next proposition, but explicitly constructing such a cover seems rather difficult.
Fortunately, in the proof we show that sometimes it is possible to give a bound on the covering
number without explicitly constructing the cover.

Proposition 2. If X = Bd
q and F =

{
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

p

}
for some p ≥ 1 and q ≥ 1 such

that 1
p + 1

q = 1, we have N (F , α) ≤
(
2
α + 1

)d
for any 0 ≤ α ≤ 1 and Riid(F) = O

(√
d ln(n

d )
n

)
whenever n ≥ d.

Proof. Fix any 0 ≤ α ≤ 1. Let rBd
p be a p-norm ball with radius r for some r ≥ 0. The key idea is

to pack the ball Bd
p with as many small balls α

2B
d
p as possible. Formally, let S ⊂ Bd

p be the largest
subset such that for any two points θ, θ′ ∈ S, we have ∥θ − θ′∥p > α (this is call an α-packing
of Bd

p ). We first claim that the corresponding function class H = {hθ(x) = ⟨θ, x⟩ | θ ∈ S} is a
pointwise α-cover of F . Indeed, for any θ ∈ Bd

p , there must exist θ′ ∈ S such that ∥θ − θ′∥p ≤ α,
since otherwise θ can be added to S and it is still an α-packing, a contradiction to the definition of
S. It is then clear that |fθ(x)− hθ′(x)| ≤ α for any x ∈ Bd

q .

It remains to prove |S| ≤
(
2
α + 1

)d
. To show this, imagine that for each point in S, we put a p-

norm ball with radius α
2 centered at this point. By the definition of S, all these balls are disjoint.

On the other hand, all these balls are contained in the larger ball (1 + α
2 )B

d
p . Therefore, we must

have that the sum of the volumes of all these small balls α
2B

d
p is bounded by the volume of the

larger ball (1 + α
2 )B

d
p : |S|Vol(α2B

d
p) ≤ Vol((1 + α

2 )B
d
p). Using the fact Vol(rBd

p) = rdVol(Bd
p)

and rearranging then proves |S| ≤
(
2
α + 1

)d
. The upper bound on Riid(F) is again obtained by

applying Theorem 1 and setting α =
√
d/n.

In HW1, you will also prove that this covering number of order O( 1
αd ) is tight for the linear class,

using a similar volumetric argument. Next, we consider a nonparametric example where X = R and
F is the set of all non-decreasing functions. This function class is commonly used in the so-called
isotonic regression problems, where it is very natural to assume that the output is monotonic in the
input (for example, predicting the height of children as a function of age). In this case, F seems to
be a very expressive class. Indeed, it has an infinite pointwise covering number, as shown below.

Proposition 3. If X = R, Y = [−1,+1], and F ∈ YX is the set of all non-decreasing functions,
then N (F , α) = ∞ for any α < 1.

Proof. Consider an infinite subset of F defined as {fm(x) = sign(x−m) | m is an integer}. It is
impossible to pointwise cover any two different functions fm and fm′ from this set with the same
function h, since |fm(m+m′

2 ) − fm′(m+m′

2 )| = 2 and thus h(m+m′

2 ) cannot be simultaneously
α-close to both fm(m+m′

2 ) and fm′(m+m′

2 ). This implies that there is no finite pointwise cover for
F .

Does this imply that this function class is not learnable? The answer is no as we show in the next
section. Importantly, this implies that pointwise covering is in fact not the right, or at least not the
tight, complexity measure.

1.2 Covering projections

Recall that just as in classification, symmetrization allows us to only care about the projection
F|x1:n , instead of the entire function class F . This motivates us to approximately discretizes the
n-dimensional space F|x1:n instead of F . Formally, we say that V ⊂ [−1,+1]n is an α-cover of
F|x1:n with respect to ℓ∞ norm if for any f ∈ F|x1:n , there exists v ∈ V such that ∥f − v∥∞ ≤ α.
Note that here we slightly abuse the notation by using f as an n-dimensional vector (while previ-
ously it was also used as a function in F). The (ℓ∞ norm) α-covering number N∞(F|x1:n

, α) is
defined as the size of the smallest ℓ∞ norm α-cover.
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In fact, a more careful inspection of the proof of Theorem 1 reveals that ℓ∞ cover is not necessarily
needed. To this end, for any p > 0, we say that V ⊂ [−1,+1]n is an α-cover of F|x1:n with respect
to ℓp norm if for any f ∈ F|x1:n , there exists v ∈ V such that ∥f − v∥p ≤ n

1
pα, or equivalently(

1

n

n∑
t=1

|ft − vt|p
) 1

p

≤ α.

Similarly, the corresponding α-covering number Np(F|x1:n
, α) is defined as the size of the smallest

ℓp norm α-cover.

Note that there is a somewhat “strange” (but in fact conventional) normalization going on in this

definition. This normalization ensures that
(
1
n

∑n
t=1 |ft − vt|p

) 1
p is an increasing function in p

(you can prove this via Hölder inequality), and therefore

N1(F|x1:n , α) ≤ N2(F|x1:n , α) ≤ · · · ≤ N∞(F|x1:n , α).

An argument similar to the proof of Theorem 1 shows the following.
Theorem 2. For any F ⊂ [−1,+1]X and inputs x1:n, we have

R̂iid(F ;x1:n) ≤ min
α≥0

(
α+

√
2 lnN1(F|x1:n , α)

n

)
.

Proof. Fix any α ≥ 0. Let V be an α-cover of F|x1:n
with size N1(F|x1:n

, α) and vf ∈ V be the
“representative” of f ∈ F|x1:n such that ∥f − vf∥1 ≤ nα. We then have with ϵ = (ϵ1, · · · , ϵn),

R̂iid(F ;x1:n) =
1

n
E

[
sup

f∈F|x1:n

⟨ϵ, f⟩

]
=

1

n
E

[
sup

f∈F|x1:n

⟨ϵ, f − vf + vf ⟩

]

≤ 1

n
E

[
sup

f∈F|x1:n

⟨ϵ, f − vf ⟩

]
+

1

n
E

[
sup

f∈F|x1:n

⟨ϵ, vf ⟩

]

≤ 1

n
E

[
sup

f∈F|x1:n

∥f − vf∥1

]
+

1

n
E
[
sup
v∈V

⟨ϵ, v⟩
]

≤ α+

√
2 lnN1(F|x1:n

, α)

n
. (Massart’s lemma)

Since this holds for any α ≥ 0, the theorem follows.

Now let’s see how covering projections is better than covering functions. First, since F|x1:n lies
in [−1,+1]n, it is trivial to see that by discretizing [−1,+1]n into small hypercubes, similarly to
what we did in the previous section, one can show that N∞(F|x1:n , α) ≤

(
1
α

)n
always holds. This

bound is useless though since it leads to a constant upper bound on the Rademacher complexity if
one plugs this into the bound of Theorem 2.

Second, note that if H is a pointwise α-cover of F , then by definition H|x1:n
is also a α-cover

of F|x1:n
with respect to ℓ∞ norm, which implies N∞(F|x1:n

, α) ≤ N (F , α) (that is, cover-
ing projections is never worse than covering functions). Therefore, for the linear class F ={
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

p

}
discussed earlier, one also has N∞(F|x1:n

, α) ≤
(
2
α + 1

)d
. In fact,

it is not hard to see that more generally, as long as F|x1:n
lies in some d-dimensional subspace of

[−1,+1]n, then its covering number is roughly of order O(( 1
α )

d) (see HW1).

Finally, we come back to the non-decreasing function class and argue that while N (F , α) = ∞,
N∞(F|x1:n

, α) is finite, which means covering projections is strictly better than covering functions.
Proposition 4. If X = R, Y = [−1,+1], and F ∈ YX is the set of all non-decreasing functions,
then N∞(F|x1:n

, α) ≤ (n+ 1)
1
α for any α < 1, and thus

Riid(F) ≤ min
0≤α≤1

(
α+

√
2 ln(n+ 1)

αn

)
= O

((
lnn

n

) 1
3

)
.
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Proof. Without loss of generality we assume x1 ≤ · · · ≤ xn. Let S ⊂ [−1,+1] be a finite dis-
cretization at scale 2α such that |S| ≤ 1/α and for any y ∈ [−1,+1], there exists y′ ∈ S such
that |y − y′| ≤ α. Let V = {v ∈ Sn | v1 ≤ · · · ≤ vn}. Clearly, by construction V is an α-cover
of F|x1:n

with respect to ℓ∞ norm. It remains to calculate the size of V . It is not hard to see
that |V | is exactly the number of solutions of the equation

∑|S|
i=1 mi = n for non-negative integers

m1, . . . ,m|S|, where mi represents the number of appearances of the i-th smallest element of S.
The exact number of solutions is

(
n+|S|−1
|S|−1

)
, but a rough estimate (n + 1)|S| ≤ (n + 1)

1
α can be

obtained by simply realizing that each mi can only take n + 1 possible values. The bound on the
Rademacher complexity is by a direct application of Theorem 2 and picking the optimal value of
α.

This shows that while the class of all non-decreasing functions is seemingly very expressive, it is
in fact still learnable via ERM. This serves as another example to showcase the importance of the
symmetrization trick, which allows us to focus only on the projections but not the functions.

We finally remark that no matter what kind of covers we are using, it only happens in the analysis
but not the algorithm — the algorithm is always just ERM, which could be very efficient even for
problems like isotonic regression.

2 Dudley Entropy Integral

One might notice that the rate of convergence shown in Proposition 6 is roughly 1/n
1
3 , which is

slower than the typical rate 1/
√
n we have seen for all other examples. Does that really imply that

learning non-decreasing functions requires more samples, or is our bound loose? It turns out that
the latter is true, and to improve the bound, we need to apply a tighter analysis using the so-called
Dudley entropy integral.
Theorem 3. For any F ⊂ [−1,+1]X and inputs x1:n, we have

R̂iid(F ;x1:n) ≤ min
0≤α≤1

(
4α+

12√
n

∫ 1

α

√
lnN2(F|x1:n

, δ)dδ

)
.

The proof is deferred to the next section. The upper bound in the theorem above is called the Dudley
entropy integral of class F (log covering number is often called the metric entropy; hence the name).
It is in terms of the ℓ2 covering number (the reason will be clear in the proof), and it looks at the cov-
ering number at different scales simultaneously. Ignoring constants and the difference between N1

and N2, this is never worse than the bound given by Theorem 2 since
√

lnN2(F|x1:n
, δ) is decreas-

ing in δ and thus
∫ 1

α

√
lnN2(F|x1:n

, δ)dδ ≤ (1 − α)
√
lnN2(F|x1:n

, α) ≤
√
lnN2(F|x1:n

, α). It
could be strictly better though as shown in the following two examples.
Proposition 5. If X = Bd

q and F =
{
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

p

}
for some p ≥ 1 and q ≥ 1 such

that 1
p + 1

q = 1, we have Riid(F) = O
(√

d/n
)

.

Proof. We use the bound N2(F|x1:n
, δ) ≤ N (F , δ) ≤

(
2
δ + 1

)d ≤
(
3
δ

)d
, and thus√

lnN2(F|x1:n
, δ) ≤

√
d ln

(
3
δ

)
≤ 2

√
d ln

(
1
δ

)
for δ ≤ 1/3. Therefore we have∫ 1

α

√
lnN2(F|x1:n

, δ)dδ =

∫ 1/3

α

√
lnN2(F|x1:n

, δ)dδ +

∫ 1

1/3

√
lnN2(F|x1:n

, δ)dδ

≤ 2
√
d

∫ 1/3

α

ln

(
1

δ

)
dδ +O(

√
d)

= 2
√
d (δ − δ ln δ)

∣∣1/3
α

+O(
√
d).

Setting α = 0 finishes the proof.

So using the Dudley entropy integral allows us the remove the extra lnn term (in Proposition 2) for
the Rademacher complexity of linear functions. The improvement in the next example will be even
more significant.
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Proposition 6. If X = R, Y = [−1,+1], and F ∈ YX is the set of all non-decreasing functions,

then Riid(F) = O
(√

lnn
n

)
.

Proof. Again we directly plug in the bound N2(F|x1:n , δ) ≤ N∞(F|x1:n , δ) ≤ (n + 1)
1
δ and

calculate the Dudley entropy integral:∫ 1

α

√
lnN2(F|x1:n

, δ)dδ ≤
√

ln (n+ 1)

∫ 1

α

1√
δ
dδ = 2

√
ln (n+ 1)(1−

√
α) ≤ 2

√
ln (n+ 1).

Setting α = 0 finishes the proof.

This shows that the rate for learning non-decreasing functions is again roughly 1/
√
n instead of

1/n
1
3 , demonstrating the power of Dudley entropy integral.

2.1 Chaining Technique

Proof of Theorem 3. The proof relies on an important chaining technique that looks at different
scales of covering simultaneously. Specifically, for j = 1, 2, . . . ,M (for some M to be specified
later), let αj = 2−j and Vj be an (ℓ2 norm) αj-cover of F|x1:n

with size N2(F|x1:n
, αj). Then for

each f ∈ F|x1:n
, we can associate it with a chain of representatives vjf ∈ Vj for j = 1, 2, . . . ,M

such that
∥∥∥f − vjf

∥∥∥
2
≤

√
nαj . Additionally, we let v0f be the all-zero vector for notational conve-

nience. We then have with ϵ = (ϵ1, · · · , ϵn),

R̂iid(F ;x1:n) =
1

n
E

[
sup

f∈F|x1:n

⟨ϵ, f⟩

]
=

1

n
E

 sup
f∈F|x1:n

〈
ϵ, f − vMf

〉
+

M∑
j=1

〈
ϵ, vjf − vj−1

f

〉
≤ 1

n
E

[
sup

f∈F|x1:n

〈
ϵ, f − vMf

〉]
+

1

n

M∑
j=1

E

[
sup

f∈F|x1:n

〈
ϵ, vjf − vj−1

f

〉]

≤ 1

n
E

[
sup

f∈F|x1:n

∥∥f − vMf
∥∥
1

]
+

1

n

M∑
j=1

E

[
sup

(v,v′)∈Sj

⟨ϵ, v − v′⟩

]
,

where

Sj =

{
(v, v′) ∈ Vj × Vj−1

∣∣∣∣ ∃ f ∈ F|x1:n s.t. v and v′ are both representatives of f
}
.

The first term in the last bound is bounded by αM since
∥∥∥f − vMf

∥∥∥
1
≤

√
n
∥∥∥f − vMf

∥∥∥
2
= nαM by

Cauchy-Schwarz inequality. For the second term, we apply Massart’s lemma again:

E

[
sup

(v,v′)∈Sj

⟨ϵ, v − v′⟩

]
≤ σ

√
2 ln(|Vj ||Vj−1|) ≤ 2σ

√
ln |Vj | = 2σ

√
lnN2(F|x1:n , αj)

where σ = sup(v,v′)∈Sj
∥v − v′∥2. Since for any pair (v, v′) ∈ Sj , there exists f such that

∥v − f∥2 ≤
√
nαj and ∥v′ − f∥2 ≤

√
nαj−1, one has

∥v − v′∥2 ≤ ∥v − f∥2 + ∥v′ − f∥2 ≤
√
n(αj + αj−1) = 3

√
nαj .

This shows σ ≤ 3
√
nαj and thus

R̂iid(F ;x1:n) ≤ αM +
6√
n

M∑
j=1

αj

√
lnN2(F|x1:n , αj)

≤ αM +
12√
n

M∑
j=1

(αj − αj+1)
√

lnN2(F|x1:n , αj)

≤ αM +
12√
n

∫ α1

αM+1

√
lnN2(F|x1:n , δ)dδ,
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where the last step uses the fact that
√

lnN2(F|x1:n , δ) is a non-increasing function in δ. Finally,
for any 0 ≤ α ≤ 1, let M be such that 2−(M+2) ≤ α ≤ 2−(M+1), then we have αM ≤ 4α and
α ≤ αM+1, and thus

R̂iid(F ;x1:n) ≤ 4α+
12√
n

∫ 1

α

√
lnN2(F|x1:n

, δ)dδ,

finishing the proof.

Note that the key reason that ℓ2 norm covers are used is because the definition of σ is in terms of
ℓ2 norm (which is inherited from the maximal inequality). Also, a close examination of the proofs
shows that Theorem 3 in fact holds for any class in RX , while Theorem 1 and Theorem 2 only hold
for classes in [−1,+1]X (for classes with a larger range, the bounds should be scaled appropriately).

Summary To recap, we have shown three different upper bounds in terms of covering numbers
for the Rademacher complexity of a real-valued class, along with two running examples to show
how good each bound is; see the table below for a summary.

Table 1: Summary of Rademacher complexity upper bounds using covering numbers

Upper bounds
Examples

linear functions non-decreasing functions

R̂iid(F ;x1:n) ≤

min
α≥0

(
α+

√
2 lnN (F,α)

n

)
O
(√

d ln(n
d )

n

)
∞

min
α≥0

(
α+

√
2 lnN1(F|x1:n

,α)

n

)
O
(√

d ln(n
d )

n

)
O
((

lnn
n

) 1
3

)
min

0≤α≤1

(
4α+ 12√

n

∫ 1

α

√
lnN2(F|x1:n , δ)dδ

)
O
(√

d
n

)
O
(√

lnn
n

)

3 Combinatorial Parameters: Pseudo-Dimension

Note that the role of covering number is very similar to the role of growth function for classification
problems. For the latter, we also introduced VC dimension, a combinatorial parameter of a class that
might be easier to figure out and that gives a direct upper bound on the growth function via Sauer’s
lemma. This leads to a natural question: can we also come up with some combinatorial parameter
for a real-valued function class that helps us bound the covering number directly?

Indeed, such combinatorial parameters exist. The first such one in the literature is the pseudo-
dimension, and it is based on a pretty natural idea of reducing a real-valued function to a binary
classifier by looking at it epigraph. Specifically, a function f : X → [−1,+1] naturally separates
the space X × [−1,+1] into two parts: the part where f(x) ≤ y (which is called the epigraph
of f ) and the part where f(x) > y. Therefore, we can see f as a binary classifier for the space
X × [−1,+1]. Pseudo-dimension of F is simply defined as the VC dimension of this induced class
of binary classifiers:

Pdim(F) = VCdim ({h(x, y) = sign(f(x)− y) | f ∈ F}) .

If we spell out the definition of VC dimension, then Pseudo-dimension is the largest number n such
that there exist n input-output pairs (x1, y1), . . . , (xn, yn) ∈ X×[−1,+1], such that for any labeling
s1, . . . , sn ∈ {−1,+1}, there exists f ∈ F with sign(f(xt) − yt) = st for all t = 1, . . . , n. (Try
drawing a picture for the case X = R to help understand this.)

Take the linear class as an example again: X = Bd
q , F =

{
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

p

}
for some

p ≥ 1 and q ≥ 1 such that 1/p+ 1/q = 1. To see how large the pseudo-dimension is for this class,
we need to look at the VC dimension of the class

{
h(x, y) = sign(⟨θ, x⟩ − y) | θ ∈ Bd

p

}
. This is

very similar to the class of linear classifiers we discussed in Lecture 2 (and HW 1), and it is not hard
to verify that the VC dimension is exactly d. Therefore, the pseudo-dimension of F is d.
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A finite pseudo-dimension turns out to be sufficient for learning. Indeed, one can show an ana-
logue of Sauer’s lemma which says that the log α-covering number lnN1(F|x1:n , α) is of order
Pdim(F) ln

(
1
α

)
(ignoring some log factors). We will not prove this fact, but using this bound with

Theorem 2 directly gives Riid(F) = O(
√

Pdim(F)(lnn)/n). Also note that for the linear class,
this gives almost the same bound as those in Table 1.

However, it turns out that finite pseudo-dimension is not necessary for learning. To see this, we
examine the class of all non-decreasing functions again. The claim is that while this class is learn-
able (as we already proved), it actually has infinite pseudo-dimension, which implies that pseudo-
dimension is not the “right” complexity measure. Indeed, for any n, consider the input-output pairs
(0, 0/n), (1, 1/n), (2, 2/n), . . .. For any labeling s1, . . . , sn ∈ {−1,+1}, we can always find a non-
decreasing function that passes through the points (0, 0/n+s1ϵ), (1, 1/n+s2ϵ), (2, 2/n+s3ϵ), . . .,
as long as ϵ is in (0, 1

2n ], and it is clear that such a function satisfies sign(f(xt) − yt) = st for all
t = 1, . . . , n. This shows that the induced binary classifier class can shatter this kind of training set
for any n, and thus the pseudo-dimension is infinity.

How do we fix this? Is there a better combinatorial parameter whose finiteness is necessary for
learning? We will answer these questions in the next lecture.
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