
CSCI 678: Theoretical Machine Learning
Lecture 4

Fall 2024, Instructor: Haipeng Luo

1 Regression: Fat-Shattering Dimension

In the last lecture, after deriving several upper bounds on the Rademacher complexity of a real-
valued function class using different covering numbers, we started looking for a combinatorial pa-
rameter that is analogous to the VC dimension for classification problems and that gives a direct
upper bound on the covering number. Our first attempt was pseudo-dimension, defined as

Pdim(F) = VCdim ({h(x, y) = sign(f(x)− y) | f ∈ F}) ,

that is, the largest number n such that there exist n input-output pairs (x1, y1), . . . , (xn, yn) ∈ X ×
[−1,+1], such that for any labeling s1, . . . , sn ∈ {−1,+1}, there exists f ∈ F with sign(f(xt) −
yt) = st for all t = 1, . . . , n. While this is a reasonable complexity measure for the linear class, we
found that it is infinity for the (learnable) class of non-decreasing functions: for any n, input-output
pairs (0, 0/n), (1, 1/n), (2, 2/n), . . ., and any labeling s1, . . . , sn ∈ {−1,+1}, we can always find
a non-decreasing function that satisfies sign(f(xt)−yt) = st for all t = 1, . . . , n by passing through
the points (0, 0/n+ s1ϵ), (1, 1/n+ s2ϵ), (2, 2/n+ s3ϵ), . . ., for some ϵ ∈ (0, 1

2n]. Therefore, finite
pseudo-dimension is not necessary for learning.

To fix this issue, we compare the definition of pseudo-dimension and covering number and point
out that what is missing for pseudo-dimension is the “scale” α. Intuitively, we need a combinatorial
parameter that is also in terms of some scale α, such that it becomes smaller when the scale is
larger. One way to do so is to require the induced binary classifier sign(f(x) − y) to not only
predict correctly the labels, but also predict correctly with a certain confidence/margin. This leads
to the concept of fat-shattering. Specifically, we say that a class F ⊂ [−1,+1]X α-shatters a set
x1, . . . , xn ∈ X , if there exist y1, . . . , yn ∈ [−1,+1] (called the witness to shattering), such that
for any labeling s1, . . . , sn ∈ {−1,+1}, there exists f ∈ F with st(f(xt) − yt) ≥ α/2 for all
t = 1, . . . , n. The condition st(f(xt) − yt) ≥ α/2 exactly corresponds to predicting the label st
correctly with margin α/2. With this concept, the fat-shattering dimension of F at scale α is defined
as the size of the largest α-shattered set:

fat(F , α) = max {n | there exists a set x1:n that is α-shattered by F} .

Clearly, fat(F , α) is decreasing in α — if F α-shatters a set, then it must α′-shatters the same set
for any α′ < α by definition. It is also clear that when α goes to zero, fat-shattering dimension just
becomes pseudo-dimension.

Coming back to the example of the class F of all non-decreasing functions, we see that in the
previous construction of the shattered set, the margin is only ϵ ∈ (0, 1

2n], which becomes smaller
and smaller as we increase n. Therefore, if we require the margin to be at least α/2 for some α,
then the construction works as long as n ≤ 1/α, showing that fat(F , α) ≥ ⌊1/α⌋; however, when
n > 1/α, the construction no longer works. While this does not prove that fat(F , α) is exactly
⌊1/α⌋ (think about why), the following proposition shows that 1/α is indeed the right order.

Proposition 1. If X = R, Y = [−1,+1], and F ∈ YX is the set of all non-decreasing functions,
then fat(F , α) ≤ 4

α + 1 for any α > 0.

Proof. Suppose x1 ≤ · · · ≤ xn is α-shattered by F with witness y1 ≤ · · · ≤ yn (convince yourself
that they must be ordered in this way). Let st = +1 for every odd t and st = −1 for every even t,
and f ∈ F be the corresponding function that predicts these labels correctly with margin α/2. Then
by the fact that f is non-decreasing, for every odd t we must have

yt+1 − yt ≥ yt+1 − f(xt+1) + f(xt)− yt ≥ st+1(f(xt+1)− yt+1) + st(f(xt)− yt) ≥ α.

Since all yt’s are in the interval [−1,+1] of length 2, we must have ⌊n
2 ⌋ × α ≤ 2, which means n

must not be larger than 4/α+ 1.

So how is the fat-shattering dimension connected to the covering number? It turns out that there is
also an analogue to Sauer’s lemma, which we state below without going into the proof.
Theorem 1. For any F ⊂ [−1,+1]X and α ∈ (0, 1), we have for any inputs x1:n,

lnN2(F|x1:n
, α) = O

(
fat(F , cα) ln

(
1

α

))
for some absolute constant c > 0.

This bound is tighter than the one for pseudo-dimension since fat(F , cα) ≤ Pdim(F). Note that
it is also independent of n, and roughly indicates that F|x1:n lies in a fat(F , cα)-dimensional sub-
space of [−1,+1]n. Applying Dudley integral entropy further gives us a bound on the Rademacher
complexity. For example, applying it to the class of non-decreasing functions gives the following:
Proposition 2. If X = R, Y = [−1,+1], and F ∈ YX is the set of all non-decreasing functions,
then Riid(F) = O(

√
1/n).

Proof. We apply Dudley integral entropy with lnN2(F|x1:n , α) = O
(
1
α ln

(
1
α

))
= O

(
1

α3/2

)
:

Riid(F) = O
(
inf
α

(
α+

1√
n

∫ 1

α

dδ

δ3/4

))
= O

(
1√
n

)
.

Compared to the bound Riid(F) = O(
√

(lnn)/n) we obtained in the last lecture via a bound
N∞(F|x1:n

, α) ≤ (n + 1)
1
α on the ℓ∞ covering number, here we further improve it (removing the

lnn factor) by using a direct bound on the ℓ2 covering number via fat-shattering dimension. This
shows the advantage of going for the fat-shattering dimension directly.

In fact, unlike the pseudo-dimension, it has been shown that a finite fat-shattering dimension is
necessary for the learnability of F . Putting everything together, we have thus obtained the following
sequence of tight upper bounds on the value of the statistical learning game:

V iid(F , n) ≤ sup
P

(
E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

ℓ(f, zt)

)])
(using ERM)

≤ 2 sup
P

Riid(ℓ(F)) (symmetrization)

≤ 2G sup
P

Riid(F) (erasing the loss)

≤ 2G sup
x1:n

min
0≤α≤1

(
4α+

12√
n

∫ 1

α

√
lnN2(F|x1:n

, δ)dδ

)
(Dudley entropy integral)

≤ 2G min
0≤α≤1

O

(
α+

1√
n

∫ 1

α

√
fat(F , cδ) ln

(
1

δ

)
dδ

)
. (Theorem 1)

2 Towards Understanding the Complexity of Neural Networks

At this point, we have covered all basic concepts and tools in understanding statistical learning. Let’s
now do a case study on neural networks, the arguably most important models in modern machine
learning practice, and see if our theory can explain its practical success (at least partially).

2

One of the major puzzles of neural nets is why it allows generalization, even when the number of
parameters is several orders more than the size of the training set. Indeed, a modern neural net archi-
tecture could easily have millions or even billions parameters, leading to a highly expressive model
that often enjoys zero training error. To make sure such amazing performance on the training set
generalizes to unseen data, our theory says that uniform convergence needs to hold, or equivalently,
the class of neural nets needs to be learnable.

For classification problem, we know that learnability can be characterized by VC-dimension. How-
ever, the VC-dimension of a neural net appears to be often at least as large as the size of the training
set: for example, a fully connected feed-forward neural net with about 1 million parameters can
perfectly fit the CIFAR10 dataset with 50K images and completely random labels, a strong evidence
that this model class shatters the CIFAR10 dataset [Zhang et al., 2017]. Based on the theory we
have discussed, in particular, V iid(F , n) ⪅

√
VCdim(F)/n, we should not expect that this class

generalizes well on unseen data. This is, however, contrary to the fact that when trained on clean
CIFAR10, the model does achieve about 50% accuracy (highly nontrivial for a 10-class problem).
In fact, a much higher (close to 90%) accuracy can be achieved by a convolutional neural net with a
similar number of parameters.

In fact, other complexity measures such as Rademacher complexity and covering number seemingly
also fail to explain why neural nets generalize, because even for the class of linear functions, a highly
degenerated special case of neural nets, the excess risk bounds we have derived are all of the form
V iid(F , n) ⪅

√
d/n with d bing the dimension (essentially the same as number of parameters),

which, as mentioned, is often much larger than n when training neural nets. So, is all the theory we
have discussed so far useless for understanding neural nets?

Not quite. The discussion above just indicates that VC-dimension or number of parameters is likely
not the real intrinsic quantity that measures the complexity of a neural net. Indeed, intuitively, the
magnitude of the weights of a neural net should play an even more important role in determining
its complexity. In fact, we have already seen one such example in HW1, where we show that for
linear functions with weight vector bounded by b in ℓ2 norm, its Rademacher complexity is at most
b
n

√∑n
t=1 ∥xt∥22, which is dimension-independent and shows that the real complexity of the class is

determined by the norm of the weight vectors instead of their dimension.

In the rest of the lecture, we will derive something similar for neural nets, mainly taken from [Bartlett
et al., 2017]. As a warm-up, we will first discuss how to derive an almost dimension-independent
covering number bound for linear class, then generalize it to the matrix case which corresponds to
one layer of a neural net, and finally further generalize it to a full neural net. After all the theoretical
derivations, we will come back to some empirical results and discuss whether these new bounds
indeed explain why neural nets work in practice.

2.1 Almost dimension-independent covering number: a warm-up

First, we prove the following log covering number bound for a class of linear functions (you have
already seen this result in HW1). Importantly, its explicit dependence on d is only logarithmic.

Theorem 2. For the class F =
{
fθ(x) = ⟨θ, x⟩ | θ ∈ Rd, ∥θ∥2 ≤ b

}
, we have lnN2(F|x1:n

, α) ≤
b2∥X∥2

F ln(2d)

nα2 , where X ∈ Rn×d is the data matrix obtained by stacking x⊤
1 , . . . , x

⊤
n as rows and

∥X∥F =
√∑n

t=1 ∥xt∥22 is the Frobenius norm of X .

In contrast, the bound we developed last time is lnN2(F|x1:n
, α) ≤ lnN (F , α) ≤ d ln

(
2b
α + 1

)
(assuming ∥xt∥2 ≤ 1), which is linear in d. Note that, even though this new bound has a worse
dependence on α, in the end it does not really affect the rate in n for the Rademacher complexity
(thanks to the Dudley entropy integral) — indeed, in HW1, you are asked to use this result to prove
a Rademacher complexity bound b

n

√∑n
t=1 ∥xt∥22 (up to log factors), which is of order 1/

√
n, the

same as what we proved last time, but without polynomial dependence on the dimension d.

To prove this Theorem 2, we recall the following result, also proven in HW1:

3

Lemma 1. Let v1, . . . , vd ∈ Bn
2 be d points within the n-dimensional ℓ2-norm unit ball and

S =

{
d∑

i=1

βivi

∣∣∣∣ βi ≥ 0, ∀i, and
d∑

i=1

βi ≤ B

}
be the convex hull of these d points scaled by B > 0. We have lnN2(S, α) ≤ B2 ln d

nα2 .

Proof of Theorem 2. It suffices to write F|x1:n
in the form of S in Lemma 1. To do this, note that

each element in F|x1:n
is in the form Xθ for some θ. To write this as

∑d
i=1 βivi where vi ∈ Bn

2 , we
let vi =

X:,i

∥X:,i∥2
where X:,i is the i-th column of X , so that ∥vi∥2 = 1. Thus, with βi = θi ∥X:,i∥2,

we have Xθ =
∑d

i=1 βivi. However, one caveat is that βi might be negative, inconsistent with the
definition of S . This can be fixed by realizing

Xθ =

d∑
i=1

βivi =

d∑
i=1

(I{βi ≥ 0}βivi + I{βi < 0}(−βi) · (−vi));

hence, to be consistent with the definition of S, all we need is to double the dimension (making it
2d instead of d, with 2d base vectors ±v1, . . . ,±vd). It remains to calculate the value B:

d∑
i=1

(I{βi ≥ 0}βi + I{βi < 0}(−βi)) = ∥β∥1 ≤ ∥θ∥2 ∥X∥F ≤ b ∥X∥F ≜ B,

where the first inequality is by Cauchy-Schwarz inequality. Applying Lemma 1 then finishes the
proof.

We note without going into details that similar results can also be proven for other prime-dual norm
pairs using the same argument (you should give it a try).

2.2 Almost dimension-independent covering number: one-layer neural nets

Next, we consider a one-layer neural net that maps an input x in Rd to an output in Rm via
a weight matrix W ∈ Rm×d and a coordinate-wise ReLU activation function σ.1 For reason
that will become clear in the analysis, we care about the (1, 2) mixed norm of W : ∥W∥1,2 =∥∥(∥W:,1∥1 , . . . , ∥W:,d∥1)

∥∥
2
, that is, the ℓ2 norm of the ℓ1 norms of the columns.

Theorem 3. For the class F =
{
x → σ(Wx) | W ∈ Rm×d, ∥W∥1,2 ≤ b

}
(where σ is ReLU), we

have lnN2(F|x1:n
, α) ≤ b2∥X∥2

F ln(2dm)

nmα2 .

Proof. Note that each element of F|x1:n is of the form σ(XW⊤) ∈ Rn×m. Since ReLU is 1-
Lipschitz, it suffices to cover {XW⊤ : ∥W∥1,2 ≤ b}. To do this, we rewrite XW⊤ as

XW⊤ = X

d∑
i=1

m∑
j=1

Wjieie
⊤
j =

d∑
i=1

m∑
j=1

WjiXeie
⊤
j =

d∑
i=1

m∑
j=1

βijvij

where βij = Wji

∥∥Xeie
⊤
j

∥∥
F

and vij = Xeie
⊤
j /
∥∥Xeie

⊤
j

∥∥
F

. By seeing each vij as an nm dimen-
sional vector, we can thus apply Lemma 1 (with n there being nm here and d there being 2dm here;
the factor of 2 is again due to the caveat that βij might be negative). It remains to calculate the value
of B:

d∑
i=1

m∑
j=1

|βij | =
d∑

i=1

m∑
j=1

|Wji|
∥∥Xeie

⊤
j

∥∥
F
=

d∑
i=1

 m∑
j=1

|Wji|

 ∥Xei∥2

≤

√√√√√ d∑
i=1

 m∑
j=1

|Wji|

2

∥X∥F = ∥W∥1,2 ∥X∥F ≤ b ∥X∥F ≜ B,

1A one-dimensional ReLU is simply defined as σ(x) = max {x, 0}.

4

where the first inequality is again by Cauchy-Schwarz inequality. Applying Lemma 1 then finishes
the proof.

Note that the bound again has very mild dependence on the number of parameters dm. Also, note
that the (1, 2) mixed norm naturally appears in the analysis. In fact, Bartlett et al. [2017] compute
the value B in a slightly different way and obtain a bound in terms of the (2, 1) mixed norm of W⊤

instead (also using Cauchy-Schwarz inequality):

d∑
i=1

m∑
j=1

|βij | =
m∑
j=1

d∑
i=1

|Wji|
∥∥Xeie

⊤
j

∥∥
F
≤

m∑
j=1

∥Wj:∥2 ∥X∥F =
∥∥W⊤∥∥

2,1
∥X∥F .

However, since ∥W∥1,2 ≤
∥∥W⊤

∥∥
2,1

always holds (you can prove this by squaring both sides and
then applying Cauchy-Schwarz), what we present here appears to be a slight improvement over
Bartlett et al. [2017].

2.3 Almost dimension-independent covering number: multi-layer neural nets

Finally, we are ready to generalize the result to general fully connected feed-forward multi-layer
neural nets. To do so, we first establish a few notations:

• We use H to denote the total number of layers. Each layer h ∈ {1, . . . ,H} maps an input in
Rdh−1 to an output in Rdh , with d0 = d. Denote dmax = max {d0, d1, . . . , dH}.

• In particular, layer h is parametrized by a weight matrix from the space Wh ={
W ∈ Rdh×dh−1 | ∥W∥1,2 ≤ bh, ∥W∥2 ≤ sh

}
for some positive numbers bh and sh. Here,

∥W∥2 = maxx ̸=0 ∥Wx∥2 / ∥x∥2 is the spectral norm of W (the reason for considering spectral
norm will become clear soon).

• Let Fh = {x → σ(Wh · · ·σ(W2σ(W1x)) · · ·) | Wk ∈ Wk, ∀k ≤ h} be a class of h-layer neural
nets. The class F = FH of H-layer neural nets is what we ultimately care about.

• For some γh ≥ 0 and M ∈ Rn×dh−1 (think of it as n inputs to layer h), define C(M,Wh, γh) as a
minimum γh√

ndh
-cover of the set

{
σ(MW⊤) | W ∈ Wh

}
with respect to the Frobenius norm. By

Theorem 3, we know that ln |C(M,Wh, γh)| ≤
b2h∥M∥2

F ln(2dh−1dh)

γ2
h

≤ b2h∥M∥2
F ln(2d2

max)

γ2
h

. Also,

without loss of generality, assume C(M,Wh, γh) ⊂
{
σ(MW⊤) | W ∈ Wh

}
.2

• Further define recursively Sh = ∪M∈Sh−1
C(M,Wh, γh), with S0 = {X} where X ∈ Rn×d is

the data matrix. Note that each element Mh of Sh is in the form σ(Mh−1W
⊤
h) for some Mh−1 ∈

Sh−1 and satisfies ∥Mh∥F =
∥∥σ(Mh−1W

⊤
h)− σ(0)

∥∥
F

≤
∥∥Mh−1W

⊤
h

∥∥
F

≤ sh ∥Mh−1∥F
where the inequalities are by the Lipschitzness of ReLU and the fact ∥Wh∥2 ≤ sh. Applying
this recursively shows ∥Mh∥F ≤ ∥X∥F

∏h
k=1 sk and thus

ln |Sh| ≤ ln |Sh−1|+
b2h ∥X∥2F

(∏
k<h s

2
k

)
ln(2d2max)

γ2
h

. (1)

We now prove that each Sh is a cover for Fh|x1:n
(both of which are subsets of Rn×dh).

Lemma 2. For each h = 1, . . . ,H , Sh is an αh√
ndh

-cover of Fh|x1:n with respect to the Frobenius
norm, where αh = γh + shαh−1 and α0 = 0.

Proof. We prove the claim by induction on h. For the base case h = 1, we have S1 = C(X,W1, γ1)
and α1 = γ1, so the claim holds trivially by the definition of C. For a general h, assume that the
statement holds for h − 1. Then, for any σ(· · ·σ(σ(XW⊤

1)W⊤
2) · · ·W⊤

h) ∈ Fh|x1:n
, we first find

an Mh−1 ∈ Sh−1 such that∥∥Mh−1 − σ(· · ·σ(σ(XW⊤
1)W⊤

2) · · ·W⊤
h−1)

∥∥
F
≤ αh−1, (2)

2For the reason why this is without loss of generality, refer to HW1 Question 3(a)i.

5

which must exist due to the inductive hypothesis. Then, we find Mh ∈ C(Mh−1,Wh, γh) (conse-
quently, Mh ∈ Sh) such that ∥∥Mh − σ(Mh−1W

⊤
h)
∥∥
F
≤ γh, (3)

which must exist due to the definition of C. Combining these two, we thus have∥∥Mh − σ(· · ·σ(σ(XW⊤
1)W⊤

2) · · ·W⊤
h)
∥∥
F

≤
∥∥Mh − σ(Mh−1W

⊤
h)
∥∥
F
+
∥∥σ(Mh−1W

⊤
h)− σ(· · ·σ(σ(XW⊤

1)W⊤
2) · · ·W⊤

h)
∥∥
F

(triangle inequality)

≤ γh +
∥∥Mh−1W

⊤
h − σ(· · ·σ(σ(XW⊤

1)W⊤
2) · · ·W⊤

h−1)W
⊤
h

∥∥
F

(Eq. (3) and ReLU is 1-Lipschitz)

≤ γh +
∥∥Mh−1 − σ(· · ·σ(σ(XW⊤

1)W⊤
2) · · ·W⊤

h−1)
∥∥
F
∥Wh∥2 (definition of spectral norm)

≤ γh + shαh−1 (Eq. (2) and ∥Wh∥2 ≤ sh)
= αh,

which finishes the induction.

Using this lemma and setting γ1, . . . , γH appropriately, we finally prove our main theorem.
Theorem 4. For the class of multi-layer neural nets F = FH , we have

lnN (F|x1:n , α) ≤
∥X∥2F ln(2d2max)

ndHα2

(
H∏

h=1

s2h

)(
H∑

h=1

(
bh
sh

) 2
3

)3

.

Proof. By Lemma 2, we know that lnN
(
F|x1:n

, αH√
ndH

)
≤ ln |SH |, which, based on Eq. (1), is at

most
H∑

h=1

b2h ∥X∥2F
(∏

k<h s
2
k

)
ln(2d2max)

γ2
h

= ∥X∥2F ln(2d2max)

H∑
h=1

b2h
(∏

k<h s
2
k

)
γ2
h

.

Therefore, our goal is to minimize the bound above by picking γ1, . . . , γH , subject to the constraint

αH = γH + sHαH−1 = · · · =
H∑

h=1

γh

H∏
k=h+1

sk.

To do so, it is convenient to think of distributing αH total error over the H layers according to
some distribution ρ ∈ ∆H , where the h-th layer is allowed to have error αHρh = γh

∏H
k=h+1 sk.

Plugging γh = αHρh/
∏H

k=h+1 sk into the objective function, we obtain

∥X∥2F ln(2d2max)

α2
H

(
H∏

h=1

s2h

)
H∑

h=1

b2h
ρ2hs

2
h

,

so it remains to minimize
∑H

h=1
b2h

ρ2
hs

2
h

subject to ρ ∈ ∆H . Using KKT condition, it can be verified

that the optimal ρh is proportional to
(

bh
sh

) 2
3

, and the optimal objective value is
(∑H

h=1

(
bh
sh

) 2
3

)3

.

Combining everything and rewriting αH as α
√
ndH competes the proof.

Since the dependence on α is again 1/α2, the same as in the simple linear case, via direct calculation
similar to that in HW1 Question 1(b), we know that the Rademacher complexity of FH is of order

Õ

∥X∥F
n

(
H∏

h=1

sh

)(
H∑

h=1

(
bh
sh

) 2
3

) 3
2

 ,

which again has no explicit dependence on the number of parameters (other than logarithmic fac-
tors). In light of this bound, for a neural net with weight matrices W = (W1, . . . ,WH), we define
its spectral complexity as

R(W) =

(
H∏

h=1

∥Wh∥2

) H∑
h=1

(∥Wh∥1,2
∥Wh∥2

) 2
3

 3
2

.

6

Figure 1: Experiment results for training an AlexNet on CIFAR10 with original or random labels

2.4 Explaining the generalization of neural nets using their spectral complexity and margin

What we have derived so far suggests that the generalization error of a neural net is determined by its
spectral complexity, rather than its number of parameters. We will discuss several empirical results
from [Bartlett et al., 2017] that support this claim.

First, Figure 1 is the result for training an AlexNet (a kind of convolutional neural networks) on
CIFAR10 with original or random labels. The plots show how the “excess risk” and “Lipschitzness”
of the trained AlexNet change over different epochs; here, “excess risk” in fact means test error
minus training error (i.e., generalization error), which is why it generally goes up over time, and
the “Lipschitzness” is basically the spectral complexity up to constants. For the generalization error
plot, the cross mark indicates the first time when the training error gets to zero, which happens much
earlier when trained on original labels than on random labels. After this point, the generalization
error is simply the test error, which plateaus to about 0.3 for original labels and 0.9 for random
labels (as it should). Apparently, the number of parameters, which is the same for both cases, cannot
explain the substantial difference in the generalization error. The spectral complexity, on the other
hand, is tightly correlated with the generalization error as the plots show: the AlexNet trained on
original labels has a much lower spectral complexity compared to that trained on random labels.
This indicates that spectral complexity is indeed a better complexity measure for neural nets.

Margin However, a closer look at the plots reveals that the spectral complexity does keep growing
even after the generalization error plateaus, so the previous bound of order 1

n ∥X∥F R(W) is still
not perfectly capturing the generalization error. To further explain this, [Bartlett et al., 2017] use the
concept of margin, which, as discussed earlier in this lecture, is a way to measure the confidence on
predictions. Roughly speaking, as the number of training epochs increases after the training error
gets to zero, even though the spectral complexity of the neural net still keeps increasing, it also
becomes more and more confident on its predictions.

More formally, note that a neural net fW parametrized by W makes its prediction on x via
argmaxj fW (x)j . We can thus define its margin on example (x, y) via M(fW , x, y) ≜ fW (x)y −
maxj ̸=y fW (x)j , which is nonnegative if and only if fW makes a correct prediction. When the mar-
gin is positive, the larger it is, the more confident the neural net is on this prediction. Using what we
have discussed so far and other standard tools, [Bartlett et al., 2017] show that with high probability,
for any neural net fW and any value of γ > 0, we have

Pr

{
max

j
fW (x)j ̸= y

}
≤ 1

n

n∑
t=1

I{M(fW , xt, yt) < γ}+ Õ
(
∥X∥F R(W)

γn

)
. (4)

Note that the value of γ controls the trade-off between the two terms in the bound (with the first term
increasing in γ and the second decreasing in it), but the bound holds for all γ simultaneously, so one

7

Figure 2: Comparing (normalized) margin distributions for different tasks

can pick the one that achieves the best trade-off. Importantly, this happens only in the analysis but
not the algorithm (indeed, γ is not a hyper-parameter of the algorithm).

In particular, when fW has zero training error, we can pick γmin = mint M(fW , xt, yt) to be the
smallest margin on the training set and obtain Pr {maxj fW (x)j ̸= y} ≤ Õ

(
∥X∥FR(W)

γminn

)
. This

shows that even if the spectral complexity keeps increasing, as long as the margin also increases
accordingly, the generalization error does not necessarily go up. Indeed, the square-marked curve
in Figure 1 shows how the spectral complexity normalized by the margin behaves over time and
confirms that it does stop growing.

Margin distributions Moreover, by normalizing the margin appropriately and looking at its em-
pirical distribution, we can qualitatively compare the difficulties of different tasks, as done in Fig-
ure 2. Here, each curve is the empirical distribution of the margin normalized by ∥X∥F R(W)/n
for training an AlexNet on a particular task. To understand why the normalization is done in this
way, note that we can equivalently write Eq. (4) as

Pr

{
max

j
fW (x)j ̸= y

}
≤ 1

n

n∑
t=1

I
{

M(fW , xt, yt)

∥X∥F R(W)/n
< γ

}
+ Õ

(
1

γ

)
,

so the CDF of the distribution plots in Figure 2 is basically the term 1
n

∑n
t=1 I

{
M(fW ,xt,yt)
∥X∥FR(W)/n < γ

}
.

If a margin distribution puts more mass towards the right, then its corresponding task is qualitatively
easier. Therefore, Figure 2 tells us that (a) the MNIST dataset is easier than CIFAR10; (b) they are
almost as hard with random labels; (c) CIFAR100 (with 100 classes) is almost as hard as CIFAR10
with random labels; (d) learning with random inputs (x’s) is even harder than with random labels.

Closing remark To recap, we have used spectral complexity and margin to provide a reasonable
explanation to the generalization ability of neural nets, despite its huge number of parameters com-
pared to the size of the training set. We remark that what we did not cover at all is why the neural
net trained on clean data tends to enjoy a low spectral complexity. Note that the training here is not
ERM over a class of neural nets with a particular spectral complexity; rather, it is often just running
variants of stochastic gradient descent (SGD) without any explicit constraints on the norm of weight

8

matrices. This is the (nonconvex) optimization part that we have been ignoring in this course, and
understanding why SGD has such implicit bias towards networks with low complexity is an active
research area.

References
Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for

neural networks. Advances in neural information processing systems, 30, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations (ICLR), 2017.

9

	Regression: Fat-Shattering Dimension
	Towards Understanding the Complexity of Neural Networks
	Almost dimension-independent covering number: a warm-up
	Almost dimension-independent covering number: one-layer neural nets
	Almost dimension-independent covering number: multi-layer neural nets
	Explaining the generalization of neural nets using their spectral complexity and margin

