
CSCI 678: Theoretical Machine Learning
Lecture 5

Fall 2024, Instructor: Haipeng Luo

1 From Statistical Learning to Online Learning

Now that we have developed a quite complete picture for statistical learning, we will move on to
the harder online learning setting, which, as mentioned in Lecture 1, completely removes the i.i.d.
assumption, captures many modern machine learning applications, and have powerful implications
on optimization, game theory, privacy, and other areas. Even though online learning is harder than
statistical learning, we will show that one can establish a similar theory on learnability based on
similar but slightly more advanced techniques.

First, recall the general setup for online learning, which can be seen as a sequential game between
a learner and the environment. The game proceeds in rounds, and for each round t = 1, . . . , n, the
learner first predicts ŷt ∈ D while the environment chooses zt ∈ Z simultaneously, then the learner
suffers loss ℓ(ŷt, zt) and observes zt. The goal of the learner is to minimize the regret against some
reference class F ⊂ D,

Reg(F , n) =

n∑
t=1

ℓ(ŷt, zt)− inf
f∈F

n∑
t=1

ℓ(f, zt),

and the value of this sequential game can be written as V seq(F , n) = infπ supz1:n E
[

Reg(F,n)
n

]
,

which, as we proved in Lecture 1, is always at least as large as V iid(F , n). F is said to be online
learnable if the value V seq(F , n) goes to 0 as n increases.

Moreover, for an adaptive environment where zt can depend on ŷ1, . . . , ŷt−1, the value can be further
simplified as

V seq(F , n) = ⟪ inf
qt∈∆(D)

sup
zt∈Z

Eŷt∼qt⟫
n

t=1

[
Reg(F , n)

n

]
.

We will focus on adaptive environments (which are harder than oblivious environments) and relax
the value V seq(F , n) step by step following the same roadmap for statistical learning.

1.1 Empirical process with dependent data

Recall that in statistical learning, the very first step to relax the value is by choosing a specific
learning strategy: ERM, then the value can be shown to be bounded as the expected supremum of
an empirical process. Is there a similar analogue for online learning?

The first natural attempt is to do ERM at each step: ŷt = argminf∈F
∑t−1

τ=1 ℓ(f, zτ). This is called
the follow-the-leader approach in online learning, and it turns out that this approach will lead to
linear (in n) regret even for very simple problems and is in general not a good algorithm for online
learning. We postpone the proof of this claim to future lectures that focus on algorithm design.

So what other algorithms should we try? Instead of searching for different candidates, we will in
fact take a bolder approach — directly relax V seq(F , n) without constructing an algorithm. This
can be done with the help of the celebrated minimax theorem. Specifically, we first write the value

as the following equivalent form that introduces randomness to the environment (convince yourself
that this is indeed equivalent):

V seq(F , n) = ⟪ inf
qt∈∆(D)

sup
pt∈∆(Z)

Eŷt∼qt,zt∼pt
⟫

n

t=1

[
Reg(F , n)

n

]
.

Under some mild technical conditions which hold for all problems we will discuss, minimax theorem
says that we can in fact swap all the inf and sup above, leading to:

V seq(F , n) = ⟪ sup
pt∈∆(Z)

inf
qt∈∆(D)

Eŷt∼qt,zt∼pt
⟫

n

t=1

[
Reg(F , n)

n

]
.

We will not go into the details of these conditions. Instead, let’s focus on the consequence of
applying minimax theorem above. First, note that we have in some sense swapped the order of the
learner and the environment in this sequential game — at each time t, the environment now first
comes up with a distribution pt over the outcome zt, then the learner, knowing the distribution pt,
comes up with a randomized strategy qt. This is sometimes called the dual game. While the dual
game is seemingly more favorable for the learner (since they play second now) and might have a
smaller value, minimax theorem tells us that in fact the value of the game remains exactly the same!
In other words, which player goes first makes no difference as long as both players behave optimally.

Second, note that in the dual game, randomness is not needed for the learner anymore:

V seq(F , n) = ⟪ sup
pt∈∆(Z)

inf
ŷt∈D

Ezt∼pt⟫
n

t=1

[
Reg(F , n)

n

]
.

This is simply because the best randomized strategy qt is to put all the mass on the optimal ŷt ∈ D.
Note that, however, randomness is required for the environment now. In order words, we have also
swapped the randomness in some sense.

Finally, we emphasize that even if one could come up with the exact optimal strategy for the learner
in the dual game, it provides no clue on how the learner should behave in the original game (at
least not directly), simply because the strategies for these two different games do not even pass
“type-checking” — the one in the dual game requires seeing the strategy of the environment first
before making its own decision, while the one in the original game needs to make the decision first.
Therefore, by going to the dual game, on the one hand we can still argue about the value of the
original game, but on the other hand we have in some sense lost all the algorithmic information for
the learner. (We will see how to address this in a few weeks though.)

So how is looking at the value of the dual game any easier? It turns out that by only one more step
of upper bounding, we can further bound it by the expected supremum of some empirical process
with dependent data. This is summarized in the following theorem.
Theorem 1. The value of the dual game is bounded as

⟪ sup
pt∈∆(Z)

inf
ŷt∈D

Ezt∼pt⟫
n

t=1

[
Reg(F , n)

n

]

≤ sup
P∈∆(Zn)

E
z1:n∼P

[
sup
f∈F

1

n

n∑
t=1

(
Ez′

t∼P(·|z1:t−1) [ℓ(f, z
′
t)]− ℓ(f, zt)

)]
. (1)

To understand this bound, one should compare it with the very similar bound

V iid(F , n) ≤ sup
P

(
E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

ℓ(f, zt)

)])

= sup
P

(
E

z1:n∼Pn

[
sup
f∈F

1

n

n∑
t=1

(
Ez′

t∼P [ℓ(f, z′t)]− ℓ(f, zt)
)])

(2)

for statistical learning. The two differences are: 1) while z1, . . . , zn are drawn independently from
the worst-case distribution P in Equation (2), they are drawn from a worst-case joint distribution P
in Equation (1) and do not need to be independent; 2) in Equation (2), each summand involves a term

2

E [ℓ(f, z′t)], which is the expected loss of f under the distribution P and is the same no matter what
t is, while in Equation (1), each summand also involves a term E [ℓ(f, z′t)], but z′t is drawn from the
conditional distribution of P given the past z1:t−1, and thus is different for different t. Finally, we
point out that bound (1) is clearly at least as large as bound (2), since if we restrict P in Equation (1)
to range over product distributions, then the bound becomes exactly the same as Equation (2).

The collection of random variables 1
n

∑n
t=1

(
Ez′

t∼P (·|z1:t−1) [ℓ(f, z
′
t)]− ℓ(f, zt)

)
index by f ∈ F

is called an empirical process with dependent data. Note that the conditional expectation of
Ez′

t∼P (·|z1:t−1) [ℓ(f, z
′
t)] − ℓ(f, zt) given z1:t−1 is clearly 0 for any t, which means each random

variable in this empirical process is in fact the average of a sequence of martingale differences and
should be small for each f . Whether the supremum of these random variables is also reasonably
small, however, will depend on the structure of F .

Proof of Theorem 1. For simplicity we prove the theorem for n = 2. The general case can be proven
by following the exact same idea. When n = 2, the left hand side multiplied by n is simply

sup
p1

inf
ŷ1

Ez1

[
sup
p2

inf
ŷ2

Ez2

[
ℓ(ŷ1, z1) + ℓ(ŷ2, z2)− inf

f∈F
(ℓ(f, z1) + ℓ(f, z2))

]]
.

Paying attention to the dependence of each term, we can rewrite this as (this might look complicated,
but note that every step is equality!)

sup
p1

inf
ŷ1

Ez1

[
ℓ(ŷ1, z1) + sup

p2

inf
ŷ2

Ez2

[
ℓ(ŷ2, z2)− inf

f∈F
(ℓ(f, z1) + ℓ(f, z2))

]]
= sup

p1

(
inf
ŷ1

Ez′
1
[ℓ(ŷ1, z

′
1)] + Ez1sup

p2

inf
ŷ2

Ez2

[
ℓ(ŷ2, z2)− inf

f∈F
(ℓ(f, z1) + ℓ(f, z2))

])
= sup

p1

Ez1sup
p2

(
inf
ŷ1

Ez′
1
[ℓ(ŷ1, z

′
1)] + inf

ŷ2

Ez2

[
ℓ(ŷ2, z2)− inf

f∈F
(ℓ(f, z1) + ℓ(f, z2))

])
= sup

p1

Ez1sup
p2

(
inf
ŷ1

Ez′
1
[ℓ(ŷ1, z

′
1)] + inf

ŷ2

Ez′
2
[ℓ(ŷ2, z

′
2)]− Ez2

[
inf
f∈F

(ℓ(f, z1) + ℓ(f, z2))

])
= sup

p1

Ez1sup
p2

Ez2

[
inf
ŷ1

Ez′
1
[ℓ(ŷ1, z

′
1)] + inf

ŷ2

Ez′
2
[ℓ(ŷ2, z

′
2)]− inf

f∈F
(ℓ(f, z1) + ℓ(f, z2))

]
= sup

p1

Ez1sup
p2

Ez2 sup
f∈F

(
inf
ŷ1

Ez′
1
[ℓ(ŷ1, z

′
1)] + inf

ŷ2

Ez′
2
[ℓ(ŷ2, z

′
2)]− ℓ(f, z1)− ℓ(f, z2)

)
. (3)

Here, z′1 and z′2 are random variables drawn from p1 and p2 respectively (that is, same as z1 and z2).
Next, we perform the only upper bounding step — since ŷ1 and ŷ2 are from D, a superset of F , we
can replace inf ŷ1

and inf ŷ2
by the particular f from the earlier supf∈F , arriving at

sup
p1

Ez1sup
p2

Ez2 sup
f∈F

(
Ez′

1
[ℓ(f, z′1)] + Ez′

2
[ℓ(f, z′2)]− ℓ(f, z1)− ℓ(f, z2).

)
Finally, we look at Ez1 supp2∈∆(Z) and note that for each possible draw of z1, there is a corre-
sponding best distribution p2. This is the same as swapping the order and let p2 range over all the
mappings from Z to ∆(Z): supp2:Z→∆(Z) Ez1 and let z2 be drawn from p2(·|z1). This implies that
the final expression is exactly equal to

sup
P∈∆(Z×Z)

E(z1,z2)∼P sup
f∈F

(
Ez′

1∼P [ℓ(f, z′1)] + Ez′
2∼P(·|z1) [ℓ(f, z

′
2)]− ℓ(f, z1)− ℓ(f, z2),

)
which finishes the proof.

We remark that Equation (3), which is equal to the value of the dual game, reveals that the optimal
pt in fact does not depend on the previous decisions of the learner in the dual game (it does depend
on all the previous outcomes z1:t−1 though). Similarly, the optimal strategy for the learner at each
time t is simply to minimize the expected loss for the current step (knowing the distribution of the
current outcome zt). The intuitive reason for both is that the only dependence of the regret on the
learner’s decision ŷt is through the loss of the current step ℓ(ŷt, zt) (in particular, ŷt plays no role
in the benchmark term in the regret). This simplicity in the structure of the optimal solutions only
exists in the dual game, highlighting the importance of applying the minimax theorem to allow us to
focus on the dual game.

3

1.2 Symmetrization and sequential Rademacher complexity

Following the roadmap for statistical learning, the next step is to use symmetrization technique
to further relax the expected supremum of the empirical process and arrive at something close to
the Rademacher complexity. There are again connections and importance differences between the
two settings. One key difference is that we will need the concept of a Z-valued tree, which is
just a complete binary tree with some value from Z in each node. More formally, a Z-valued
tree z of depth n consists of n mappings z1, . . . ,zn where zt : {−1,+1}t−1 → Z specifies the
values of the t-th level of the tree. For a path (from the root to a leave of the tree) denoted by
ϵ1, . . . , ϵn ∈ {−1,+1} (think −1 as left and +1 as right), zt(ϵ1:t−1) for t = 1, . . . , n specify the
n values on this path.1 For notational convenience, we will simply write zt(ϵ1:t−1) as zt(ϵ) where
ϵ = (ϵ1, · · · , ϵn) ∈ {−1,+1}n, even though zt only takes the first t− 1 entries of ϵ as inputs.2

With this concept, for any class H : Z → R, we define its conditional sequential Rademacher
complexity on a given tree z as

R̂seq(H; z) =
1

n
Eϵ

[
sup
h∈H

n∑
t=1

ϵth(zt(ϵ))

]
where ϵ = (ϵ1, · · · , ϵn) consists of n i.i.d. Rademacher random variables. The (unconditional)
sequential Rademacher complexity of H is defined as

Rseq(H) = sup
z

R̂seq(H; z) =
1

n
sup
z

Eϵ

[
sup
h∈H

n∑
t=1

ϵth(zt(ϵ))

]
where z ranges over all possible Z-valued trees of depth n. Compared to the counterparts in the
statistical learning setting, the similar part is that we are still basically measuring how well H can
fit random signs, but the key difference is that instead of having n samples z1:n, we now have a
tree of 2n − 1 samples, and the value of the t-th sample depends on the labels for the previous
t − 1 samples ϵ1:t−1. This corresponds to the sequential aspect of the game — the t-th outcome
can depend on the entire history prior to round t. Also note that for the (unconditional) sequential
Rademacher complexity, we are taking a sup over all the trees, instead of taking an expectation over
some distribution over trees. This amounts to the fact that in online learning, there is no distributional
assumption on the data.

Now we are ready to state the symmetrization result for online learning.
Theorem 2. For any joint distribution P , the expected supremum of an empirical process with
dependent data drawn from P is bounded as

E
z1:n∼P

[
sup
f∈F

1

n

n∑
t=1

(
Ez′

t∼P (·|z1:t−1) [ℓ(f, z
′
t)]− ℓ(f, zt)

)]
≤ 2Rseq(ℓ(F)),

where ℓ(F) = {hf : Z → R | f ∈ F , hf (z) = ℓ(f, z),∀z}.

Proof. We will again take n = 2 as an example to showcase the key idea of the proof, and the
general case can be proven in a similar way. We first rewrite the left hand side (multiplied by n = 2)
as

= Ez1∼P,z2∼P(·|z1) sup
f∈F

(
Ez′

1∼P [ℓ(f, z′1)]− ℓ(f, z1) + Ez′
2∼P(·|z1) [ℓ(f, z

′
2)]− ℓ(f, z2)

)
.

Next we pull the expectations out of the sup and use a similar symmetrization trick to arrive at an
upper bound

Ez1,z′
1∼P,z2,z′

2∼P(·|z1) sup
f∈F

(ℓ(f, z′1)− ℓ(f, z1) + ℓ(f, z′2)− ℓ(f, z2))

= Ez1,z′
1∼P,z2,z′

2∼P(·|z1),ϵ2 sup
f∈F

(ℓ(f, z′1)− ℓ(f, z1) + ϵ2(ℓ(f, z
′
2)− ℓ(f, z2))) ,

1Note that a path is actually completely specified by ϵ1, . . . , ϵn−1 already, but we often include ϵn as it will
be useful for some other purpose.

2For all subsequent discussion involving a tree, you should always draw an illustrative picture to help you
understand the intuitive idea of different concepts (and there will be many of them coming up).

4

where ϵ2 is a Rademacher random variable and the last step holds since z2 and z′2 are symmetric.
Now it is tempting to also introduce another Rademacher random variable ϵ1 for the part involving
z1 and z′1. However, directly doing so is in fact incorrect and the last expression is not equal to the
following

Ez1,z′
1∼P,z2,z′

2∼P(·|z1),ϵ1:2 sup
f∈F

(ϵ1(ℓ(f, z
′
1)− ℓ(f, z1)) + ϵ2(ℓ(f, z

′
2)− ℓ(f, z2))) . (×)

The reason is that z1 and z′1 are actually not symmetric, since z2 and z′2 are both drawn from the
conditional distribution given z1, which makes the role of z1 different from that of z′1!

To proceed with symmetrization, we will instead have to first remove this extra dependence on z1
by replacing Ez2,z′

2
with the worst case, leading to an upper bound

Ez1,z′
1∼P sup

z2,z′
2

Eϵ2 sup
f∈F

(ℓ(f, z′1)− ℓ(f, z1) + ϵ2(ℓ(f, z
′
2)− ℓ(f, z2))) .

Now the role of z1 and z′1 are exactly the same and we can symmetrize it as

Ez1,z′
1∼PEϵ1 sup

z2,z′
2

Eϵ2 sup
f∈F

(ϵ1(ℓ(f, z
′
1)− ℓ(f, z1)) + ϵ2(ℓ(f, z

′
2)− ℓ(f, z2))) ,

which can be further bounded as

sup
z1,z′

1

Eϵ1 sup
z2,z′

2

Eϵ2 sup
f∈F

(ϵ1(ℓ(f, z
′
1)− ℓ(f, z1)) + ϵ2(ℓ(f, z

′
2)− ℓ(f, z2)))

≤ sup
z1,z′

1

Eϵ1 sup
z2,z′

2

Eϵ2 sup
f∈F

(ϵ1ℓ(f, z
′
1) + ϵ2ℓ(f, z

′
2)) + sup

z1,z′
1

Eϵ1 sup
z2,z′

2

Eϵ2 sup
f∈F

(−ϵ1ℓ(f, z1)− ϵ2ℓ(f, z2))

= 2 sup
z1

Eϵ1 sup
z2

Eϵ2 sup
f∈F

(ϵ1ℓ(f, z1) + ϵ2ℓ(f, z2)) .

The final step is similar to the last step of the proof of Theorem 1 — look at Eϵ1 supz2 and note
that for ϵ1 = +1, there is a corresponding z2(+1) that “attains” the sup over z2; and similarly for
ϵ1 = −1, there is a corresponding z2(−1) that “attains” the sup. Therefore, it makes no difference
if we swap Eϵ1 and supz2 , and makes z2 range over all the possible “level 2” of a tree, leading to

2 sup
z

Eϵ1:2 sup
f∈F

(ϵ1ℓ(f, z1) + ϵ2ℓ(f, z2)) .

This finishes the proof.

From the proof, we also see that even if we start from a joint distribution P , because of the step of
relaxing E to sup, we end up having a sup over all the possible trees and lose the information about
P eventually. This is also the reason why sequential Rademacher complexity is defined over the
worst-case tree.

1.3 Erasing the loss

Similarly to statistical learning, for many problems, it is possible to ignore the loss function when
considering sequential Rademacher complexity, as shown in the following two lemmas.

Lemma 1. For a binary classification problem with Z = X × {−1,+1}, F ⊂ {−1,+1}X , and
0-1 loss, one has for any Z-valued tree (x,y), there exists another X -valued tree x′ such that

R̂seq(ℓ(F); (x,y)) =
1

2
R̂seq(F ;x′).

Therefore we have Rseq(ℓ(F)) ≤ 1
2R

seq(F).
Lemma 2 (Contraction). For a regression problem with Z = X × R and loss ℓ(f, (x, y)) =
ℓ′(f(x), y) for some loss ℓ′(y′, y) that is G-Lipschitz in the first parameter, one has

Rseq(ℓ(F)) ≤ GRseq(F)×O(ln3/2 n).

These lemmas are analogues of those in Lecture 2 for statistical learning, with the following differ-
ences. For Lemma 1, the statistical learning analogue is R̂iid(ℓ(F); (x1:n, y1:n)) =

1
2R̂

iid(F ;x1:n)

5

for any sequence (x1:n, y1:n), while for online learning we have moved from a tree (x,y) to some
other tree x′ (the reason will be clearly shown in the proof). Nevertheless, note that this does
not affect the final conclusion Rseq(ℓ(F)) ≤ 1

2R
seq(F), similar to Riid(ℓ(F)) = 1

2R
iid(F). For

Lemma 2, the same subtly exists, and in addition, we lose a factor of O(ln3/2 n) compared to the
statistical learning analogue. It is not clear if this extra factor is necessary or not.

We omit the proof for Lemma 2 and prove Lemma 1 below.

Proof of Lemma 1. By definition we have

R̂seq(ℓ(F); (x,y)) =
1

n
Eϵ

[
sup
f∈F

n∑
t=1

ϵt1 {f(xt(ϵ)) ̸= yt(ϵ)}

]

=
1

n
Eϵ

[
sup
f∈F

n∑
t=1

ϵt
1− yt(ϵ)f(xt(ϵ))

2

]

=
1

2n
Eϵ

[
sup
f∈F

n∑
t=1

−ϵtyt(ϵ)f(xt(ϵ))

]
.

We now claim that the random variables st = −ϵtyt(ϵ) for t = 1, . . . , n are in fact also n i.i.d.
Rademacher random variables, or equivalently, the mapping ϵ → s = (s1, · · · , sn) is a bijection
between {−1,+1}n and itself. Indeed, this is clear by constructing the inverse mapping s → ϵ
defined by ϵt = −styt(ϵ1:t−1) (note that ϵ1:t−1 can be further expressed in terms of s recursively).

Based on this fact, we can construct a tree x′ such that x′
t(s) = xt(ϵ) for any ϵ and t (note that the

tree is well defined due to the bijection), and thus

R̂seq(ℓ(F); (x,y)) =
1

2n
Eϵ

[
sup
f∈F

n∑
t=1

stf(x
′
t(s))

]
=

1

2
R̂seq(F ;x′).

Taking sup over (x,y) on both sides further proves Rseq(ℓ(F)) ≤ 1
2R

seq(F).

We remark that the tree x′ is constructed by permuting the paths of x according to y in some
complicated way. As an illustration, consider y being the tree with +1 in all nodes. Then it is not
hard to see that x′ is exactly the mirror reflection of x. As another example, if y has +1 in the root
and −1 everywhere else, then x′ is obtained by swapping the left and right subtrees of the root of x.

2 Finite class

From now on we will focus on bounding Rseq(F) for some function class F , starting with a finite
class in this section. The key is to apply maximal inequality again, restated below for convenience.
Lemma 3 (Maximal Inequality). Suppose {Uf}f∈F is a finite collection of σ-sub-Gaussian random
variables. Then we have

E
[
max
f∈F

Uf

]
≤ σ

√
2 ln |F|.

The main result is stated below.
Theorem 3. Let F ⊂ YX be a finite class. We have for any X -valued tree x,

R̂seq(F ;x) ≤ 1

n

√√√√2

(
max
f∈F

max
ϵ

n∑
t=1

f2(xt(ϵ))

)
ln |F|.

Consequently, if Y ⊂ [−C,C] for some C > 0, then Rseq(F) ≤ C
√

2 ln |F|
n .

Proof. Note that R̂seq(F ;x) = 1
nE [maxf∈F Uf] where Uf =

∑n
t=1 ϵtf(xt(ϵ)). Below we show

that Uf is σ-sub-Gaussian with σ = maxf∈F maxϵ
√∑n

t=1 f
2(xt(ϵ)), so applying maximal in-

equality then finishes the proof.

6

Indeed, with Uf,τ =
∑τ

t=1 ϵtf(xt(ϵ)) we have for any λ > 0,

E [exp (λUf,n)] = E [exp (λUf,n−1)E [exp (λϵnf(xn(ϵ))) | ϵ1:n−1]]

≤ E
[
exp (λUf,n−1) exp

(
1
2λ

2f2(xn(ϵ))
)]

where the inequality is by the fact that ϵnf(xn(ϵ)) is |f(xn(ϵ))|-sub-Gaussian. Continuing to peel
the last term of Uf,n−1 in the same way, we arrive at

E
[
exp (λUf,n−2)E

[
exp (λϵn−1f(xn−1(ϵ))) exp

(
1
2λ

2f2(xn(ϵ))
)
| ϵ1:n−2

]]
,

but note that the term exp
(
1
2λ

2f2(xn(ϵ))
)

also involves the randomness of ϵn−1, so we cannot
directly proceed in the same way. Instead, we bound it by considering the worst case:

E
[
exp (λUf,n−2)E [exp (λϵn−1f(xn−1(ϵ))) | ϵ1:n−2] max

ϵn−1

exp
(
1
2λ

2f2(xn(ϵ))
)]

≤ E
[
exp (λUf,n−2)max

ϵn−1

exp
(
1
2λ

2f2(xn−1(ϵ)) +
1
2λ

2f2(xn(ϵ))
)]

(ϵn−1f(xn−1(ϵ)) is |f(xn−1(ϵ))|-sub-Gaussian)

≤ E
[
exp (λUf,n−2) max

ϵn−2,ϵn−1

exp
(
1
2λ

2f2(xn−1(ϵ)) +
1
2λ

2f2(xn(ϵ))
)
.

]
Continuing in the same fashion, we arrive at

E [exp (λUf,n)] ≤ max
ϵ

exp

(
λ2

2

n∑
t=1

f2(xt(ϵ))

)
≤ exp

(
λ2σ2/2

)
,

which shows that Uf is σ-sub-Gaussian.

This shows that any finite class with bounded value is online learnable, which will play a key role in
following discussion with infinite classes.

3 Infinite Class: Online Binary Classification

Next, we move on to discuss the learnability of infinite classes, starting from binary classification
with 0-1 loss. Recall that for statistical learning, we made a key observation that even if F is infinite,
what really matters is the projection F|x1:n , which is always finite. Similarly, for online learning we
also have

R̂seq(F ;x) =
1

n
Eϵ

[
sup
f∈F

n∑
t=1

ϵtf(xt(ϵ))

]
=

1

n
Eϵ

[
sup
v∈V

n∑
t=1

ϵtvt(ϵ)

]
≤

√
2 ln

∣∣V ∣∣
n

(4)

where V = F|x = {(f ◦ x1, · · · , f ◦ xn) | f ∈ F} is the projection of F onto tree x, which is a
set of {−1,+1}-valued trees. Note that F|x is always finite, so we have yet again moved from an
infinite class to a finite class. However, how large can |F|x| be? Since a tree of depth n has 2n − 1
nodes, the cardinality of F|x can be as bad as 22

n−1, leading to a vacuous bound. On the other
hand, recall that in statistical learning, for a set of n samples x1:n, |F|x1:n | can only be at most 2n.

Since both 22
n−1 and 2n are vacuous bounds anyway, maybe we should just hope that |F|x| is small

for common problems with a class F that is not too complex? This is unfortunately not true, since
|F|x| can be way too large even for a very simple class. To see this, consider the following class
defined over X = R:

F =

{
fθ(x) =

{
+1, if x = θ

−1, else

∣∣∣∣ θ ∈ R
}
. (5)

This class is intuitively simple since each classifier fθ in the class is predicting +1 for one and only
one specific input θ. Indeed, it is clear that this class cannot even shatter a set of size two, and thus
VCdim(F) = 1, which means it is (easily) learnable in the statistical learning setting.

However, it is easy to construct a tree such that |F|x| = 2n, which again makes the bound in
Equation (4) vacuous. To show this, simply let x have distinct values in all nodes. Then F|x

7

contains the tree that has −1 in all nodes, and 2n − 1 other different trees, each of which has one
and only one node with value +1.

So does this mean that |F|x| is not the right complexity measure, or is this simple class really not
online learnable? It would be very unfortunate if even a class as simple as this is not online learnable.
Fortunately, it turns out that this is not the case and the projection is really not the right concept to
consider. To see how to fix this, note that the projection is really a set V of {−1,+1}-valued trees,
such that

∀f ∈ F , ∃v ∈ V , s.t. ∀ϵ ∈ {−1,+1}n, f(xt(ϵ)) = vt(ϵ) holds for all t = 1, . . . , n.

However, suppose that we have a set V of {−1,+1}-valued trees such that a similar statement holds
but importantly with two quantifiers swapped:

∀f ∈ F , ∀ϵ ∈ {−1,+1}n, ∃v ∈ V , s.t. f(xt(ϵ)) = vt(ϵ) holds for all t = 1, . . . , n.

Then this is in fact already enough for Equation (4) to hold (try to convince yourself)! A set V with
the property above is called an zero-cover of F|x, and the zero-covering number N0(F|x) is defined
as the size of the smallest zero-cover. We have thus shown the following:

R̂seq(F ,x) ≤
√

2 lnN0(F|x)
n

.

So how large can N0(F|x) be then? First of all, this is clearly always not larger than |F|x| (since
F|x is a zero-cover of itself). Second, N0(F|x) is in fact always bounded by 2n. This is because
the set of all the possible trees with the same value at each level is always a zero-cover for any class,
and there are clearly 2n such trees (since each level takes one of the two possible values). This is of
course still a vacuous bound, but it is at least the same vacuous bound as the one for a projection in
statistical learning, indicating that this might be the right complexity measure.

For a class with specific structures, N0(F|x) can be much smaller. For example, the simple class
defined in Equation (5) has zero-covering number n+ 1, implying that it is online learnable (as we
hope). To get an intuition on why its zero-covering number is n + 1, consider a special case when
x contains no identical value along any path. Then, we only need the following n+ 1 trees to cover
F|x: a tree with −1 in every node, and for each t = 1, . . . , n, a tree with +1 for all nodes at level t
and −1 everywhere else.

So what about the general case with possible identical values on a path? Directly constructing a cover
seems to be challenging this case, and it would be ideal if there exists a combinatorial parameter,
similar to VC dimension, that is easier to compute and can be used to provide a good upper bound
on the zero-covering number, in the same way as what Sauer’s lemma does in the statistical learning.
In the next lecture, we will see that there is indeed such an analogue.

8

	From Statistical Learning to Online Learning
	Empirical process with dependent data
	Symmetrization and sequential Rademacher complexity
	Erasing the loss

	Finite class
	Infinite Class: Online Binary Classification

