
CSCI 678: Theoretical Machine Learning
Lecture 6

Fall 2024, Instructor: Haipeng Luo

1 Online Binary Classification: Littlestone Dimension

In the last lecture, we started discussing online learning and derived the following sequence of upper
bounding on the sequential value V seq(F , n):

V seq(F , n) ≤ sup
P∈∆(Zn)

E
z1:n∼P

[
sup
f∈F

1

n

n∑
t=1

(
Ez′

t∼P(·|z1:t−1) [ℓ(f, z
′
t)]− ℓ(f, zt)

)]

≤ 2Rseq(ℓ(F)) ≤ Rseq(F) ≤ sup
x

√
2 lnN0(F|x)

n
,

where the first two steps hold generally and the last two are specific for binary classification with 0-1
loss. Similarly to previous discussions for statistical learning, we will now introduce a combinatorial
parameter that provides a reasonable upper bound for N0(F|x) and that is easier to bound.

First, we say that F shatters a tree x if for any ϵ ∈ {−1,+1}n, there exists f ∈ F such that
f(xt(ϵ)) = ϵt holds for all t = 1, . . . , n. Then, we define the Littlestone dimension Ldim(F) of a
class F as the depth of the largest tree that can be shattered by F (Ldim(F) is defined as 0 if no tree
can be shattered by F , and ∞ if for any n there exists a tree of depth n that is shattered by F).1

Note that one always has VCdim(F) ≤ Ldim(F), since if x1:n is shattered by F , then a tree x of
depth n such that all nodes at level t have value xt for t = 1, . . . , n is clearly shattered by F as well.
Using this fact, one sees that Ldim(F) = 0 implies VCdim(F) = 0 and thus F contains only one
function.

Similar to VC dimension, to prove Ldim(F) = d we have to 1) construct a tree of depth d that can
be shattered by F and 2) prove that no tree of depth n + 1 can be shattered by F . As an example,
we go back to the simple class discussed in the last lecture

F =

{
fθ(x) =

{
+1, if x = θ

−1, else

∣∣∣∣ θ ∈ R
}
. (1)

and argue that it has Littlestone dimension exactly 1 (the same as its VC dimension). This is because
it clearly can shatter a tree with depth 1 (in fact, any tree with depth 1); on the other hand, it cannot
shatter any tree with depth 2 (just consider ϵ = (+1,+1) and ϵ = (+1,−1)). In HW2, you will see
a generalization of this example from one dimension to general dimension.

Littlestone dimension is very useful since it can be used to provide a good upper bound on the
zero-covering number, in a way very similar to the Sauer’s lemma. This is stated in the following
theorem, whose proof also reveals how to construct a zero-cover recursively.

1We point out the subtlety that in the definition of sequential Rademacher complexity and shattering, ϵ
represents both a path and a labeling, while in the definition of zero-covering, ϵ represents a path only.

Theorem 1. Suppose that x is any X -valued tree with depth n and F ⊂ {−1,+1}X has Littlestone
dimension d ≤ n, then

N0(F|x) ≤
d∑

i=0

(
n

i

)
≤
(en
d

)d
.

Proof. Let g(d, n) =
∑d

i=0

(
n
i

)
. We will prove N0(F |x) ≤ g(d, n) via induction on the value

of d + n (the second inequality
∑d

i=0

(
n
i

)
≤
(
en
d

)d
has already been proven in Sauer’s lemma).

The base case d + n = 1 is trivial since the only configuration is d = 0 and n = 1, in which
case N0(F |x) = 1 clearly. Now, we assume that the statement holds for any n′ > d′ such that
n′+ d′ < n+ d, and prove N0(F |x) ≤ g(d, n). The case when d = 0 is again trivial, so we assume
d > 0.

First, we provide a way to recursively construct a zero-cover for F|x. Depending on the prediction
for the root of the tree (which we denote by x1 for simplicity), we split the class F into two sub-
classes: F− = {f ∈ F | f(x1) = −1} and F+ = {f ∈ F | f(x1) = −1}. Let xℓ and xr be the
left and right subtrees of the root of x (which have depth n − 1), and V ℓ

+ and V r
+ be the smallest

zero-cover of F+|xℓ and F+|xr respectively. Now we construct a set V+ in the following way: 1) the
root of every tree in V+ has value +1, 2) pair the element from V ℓ

+ and V r
+ to form the left and right

subtrees of the root for trees in V+, so that each element from V ℓ
+ and V r

+ appears at least once. It is
clear that this can be done such that |V+| = max

{
|V ℓ

+|, |V r
+|
}

. Moreover, it is also clear that V+ is
a zero-cover of F+|x. In the exact same way, we construct V− such that |V−| = max

{
|V ℓ

−|, |V r
−|
}

and V− is a zero-cover of F−|x. Finally, we have that V = V− ∪ V+ is a zero-cover of F|x.

It remains to bound |V−| and |V+|. The key observation is that it is impossible that F− and F+ both
have Littlestone dimension d. Otherwise, there are trees x− and x+ of depth d that can be shattered
by F− and F+ respectively. By pairing x− and x+ as the left and right subtrees of the root x1, we
obtain a tree with depth d+ 1 that can be shattered by F , which is a contradiction to Ldim(F) = d.
Without loss of generality, we can thus assume F− has Littlestone dimension at most d− 1. Using
the inductive hypothesis, we thus have

|V+| = max
{
|V ℓ

+|, |V r
+|
}
= max {N0(F+|xℓ),N0(F+|xr)} ≤ g(d, n− 1),

and
|V−| = max

{
|V ℓ

−|, |V r
−|
}
= max {N0(F−|xℓ),N0(F−|xr)} ≤ g(d− 1, n− 1).

Therefore, N0(F|x) ≤ |V | = |V−| + |V+| ≤ g(d − 1, n − 1) + g(d, n − 1) = g(d, n), where the
last equality is proven in Sauer’s lemma already. This finishes the proof.

We remark that the concept of zero-covering is the key to allow a construction with |V+| =
max

{
|V ℓ

+|, |V r
+|
}

. If we focus on the projection instead, we would have arrived at something like
|V+| = |V ℓ

+| × |V r
+|. Applying this theorem directly, we conclude that the zero-covering number

of the simple class defined by Equation (1) is indeed bounded by g(1, n) = n + 1 (even if the tree
contains identical elements on some paths). The proof of Theorem 1 also reveals a recursive way to
construct such a cover with size n+ 1 (you should try this for a small tree of depth say 3).

The following bound on the value of the game is a direct corollary based on previous discussions.
Corollary 1. For any class of binary classifier F with d = Ldim(F), we have

V seq(F , n) ≤ Rseq(F) ≤

√
2d ln

(
en
d

)
n

.

So finite Littlestone dimension is sufficient for online learnability. It turns out that it is also necessary
for online learnability, indicating that this sequence of upper bounding is tight in a sense.
Theorem 2. If Ldim(F) = ∞, then V seq(F , n) ≥ 1/2 for any n.

Proof. Let x be a tree of depth n shattered by F (which always exists since Ldim(F) = ∞), and
ϵ1, . . . , ϵn be i.i.d. Rademacher random variables. Consider an environment that chooses (xt(ϵ), ϵt)
at time t. In such an environment, no matter what the algorithm is (proper or improper), its expected

2

total loss is always exactly n/2. On the other hand, by the definition of shattering, there is always an
f ∈ F with perfect prediction on this dataset, which means that the expected regret is exactly n/2
and thus V seq(F , n) ≥ 1/2.

In fact, in HW2 you will prove an even stronger statement when Ldim(F) ≤ n: V seq(F , n) ≥√
Ldim(F)

8n , further showing that the upper bound we obtain is tight.

Summary. Combining all steps, we have shown for binary classification problems:√
d

8n
≤ V seq(F , n) ≤ sup

P∈∆(Zn)
E

z1:n∼P

[
sup
f∈F

1

n

n∑
t=1

(
Ez′

t∼P(·|z1:t−1) [ℓ(f, z
′
t)]− ℓ(f, zt)

)]

≤ 2Rseq(ℓ(F)) ≤ Rseq(F) ≤ sup
x

√
2 lnN0(F|x)

n
≤

√
2d ln

(
en
d

)
n

where d = Ldim(F) ≤ n.

1.1 Online learning is strictly harder

In Lecture 1, via the online-to-batch conversion we showed that online learning is at least as hard
as statistical learning. Is it strictly harder? The example of the simple class defined by Equation (1)
does not indicate that because the VC dimension and the Littlestone dimension coincide (both are
1). Instead, let’s consider the threshold function class defined over X = R:

F =

{
fθ(x) =

{
+1 if x ≤ θ

−1 else

∣∣∣∣ θ ∈ R
}
, (2)

which has VC dimension exactly 1 as discussed in Lecture 2. It turns out that the Littlestone dimen-
sion of this seemingly simple class is infinity!
Proposition 1. The Littlestone dimension of the threshold function class (Equation (2)) is ∞.

Proof. To see this, consider an infinite [0, 1]-valued tree x with root being 1/2, and the left child
and right child of a node with value a at level t being a − 1

2t+1 and a + 1
2t+1 respectively. (This is

much easier to interpret if you draw a picture.)

Now for any n and any path/labeling ϵ, let θ1 be the last node of this path xn(ϵ) and θ2 be the last
node on this path with label −ϵn. Then the claim is that any value θ in between θ1 and θ2 satisfies:
fθ(xt(ϵ)) = ϵt for all t = 1, . . . , n, and thus F shatters this tree. Indeed, note that the tree is
constructed such that if ϵt = +1, then every node in the path below level t has value larger than the
node at level t. Similarly, if ϵt = −1, then every node in the path below level t has value smaller
than the node at level t. Therefore, suppose ϵn = +1, then all the nodes with label +1 on the path
must have a value smaller than θ1, and all the nodes with label −1 on the path must have a value
larger than θ2, and thus fθ predicts all the labels correctly if θ ∈ [θ1, θ2). The case for ϵn = −1 is
similar.

Based on previous discussions, we conclude that this simple class is learnable in the statistical
learning setting, but not learnable in the online setting. More generally, it is clear that the class
of linear classifiers

F =
{
fθ,b(x) = sign (⟨x, θ⟩+ b) | θ ∈ Rd, b ∈ R

}
also has infinite Littlestone dimension (since it subsumes the threshold class), while having a finite
VC dimension d + 1. This illustrates that online learning is not just as hard as statistical learning,
but is in fact strictly harder than statistical learning.

However, is online learning just too hard to be meaningful, if even learning linear classifiers is im-
possible? The answer is yes in some sense for online classification, or really, for the 0-1 loss. In
fact, even though 0-1 loss is seemingly not as challenging for statistical learning since any class with
finite VC dimension is learnable using ERM, note that implementing ERM could still be computa-
tionally hard even for the class of linear classifiers. Therefore, in practice, we rarely directly learn

3

with 0-1 loss anyway, whether in the statistical setting or the online setting. Instead, we often use
some nice surrogate losses, making the problem closer to a regression problem. Indeed, as we will
see starting from the next section, many more possibilities open up for online regression.

2 Online Regression

To study online regression with a function class F ⊂ YX for Y = [−1,+1], the first key concept is
still covering. We say that a set V of [−1,+1]-valued trees is an α-cover (with respect to ℓp norm)
of F|x for a X -valued tree x if

∀f ∈ F ,∀ϵ ∈ {−1,+1}n ,∃v ∈ V , s.t.

(
1

n

n∑
t=1

|f(xt(ϵ))− vt(ϵ)|p
)1/p

≤ α.

Note that the order of the quantifiers ∀ϵ and ∃v is consistent with the zero-covering definition for
online classification, and also that this serves as an exact analogue of α-cover for the statistical
learning setting. The α-covering number Np(F|x, α) is simply the size of the minimum α-cover
(with respect to ℓp norm). As always, by definition Np(F|x, α) is non-increasing in α, and the
normalization is such that Np(F|x, α) is non-decreasing in p.

An α-cover naturally allows us to move from an infinite class to a finite class and derive the following
bound on the sequential Rademacher complexity:
Theorem 3. For any X -valued tree x and F ⊂ [−1,+1]X , we have

R̂seq(F ;x) ≤ inf
α≥0

(
α+

√
2 lnN1(F|x, α)

n

)
.

Proof. Fix any α. Let V be an α-cover of F|x with size N1(F|x, α) and vf,ϵ ∈ V be the tree that
“certifies” the cover for a given f and ϵ. We then have

R̂seq(F ;x) =
1

n
E

[
sup
f∈F

n∑
t=1

ϵtf(xt(ϵ))

]

=
1

n
E

[
sup
f∈F

n∑
t=1

ϵt(f(xt(ϵ))− vf,ϵ
t (ϵ) + vf,ϵ

t (ϵ))

]

≤ 1

n
E

[
sup
f∈F

n∑
t=1

ϵt(f(xt(ϵ))− vf,ϵ
t (ϵ))

]
+

1

n
E

[
sup
f∈F

n∑
t=1

ϵtv
f,ϵ
t (ϵ)

]

≤ α+
1

n
E

[
sup
v∈V

n∑
t=1

ϵtv(ϵ)

]
≤ α+

√
2 lnN1(F |x, α)

n
,

where the last step uses the finite class bound (Theorem 3 of Lecture 5).

Using similar chaining techniques, one can also tighten the bound via Dudley entropy integral (proof
omitted):
Theorem 4. For any X -valued tree x and F ⊂ [−1,+1]X , we have

R̂seq(F ;x) ≤ inf
0≤α≤1

(
4α+

12√
n

∫ 1

α

√
lnN2(F|x, δ)dδ

)
.

At this point, it is probably not surprising that there is again a combinatorial parameter that provides
a nice upper bound on the covering number. To introduce such a parameter, we first generalize the
shattering concept: a tree x is α-shattered by a class F ∈ [−1,+1]X if there exists a [−1,+1]-valued
tree y (called the witness) such that

∀ϵ ∈ {−1,+1}n ,∃f ∈ F , s.t. ϵt(f(xt(ϵ))− yt(ϵ)) ≥ α/2 holds for all t = 1, . . . , n.
The (sequential) fat-shattering dimension of F at scale α, denoted by sfat(F , α), is then defined
as the depth of the largest tree that can be α-shattered by F . The following theorem shows the
connection between covering number and fat-shattering dimension (proof omitted):
Theorem 5. For any α > 0, tree x of depth n, and function class F ⊂ [−1,+1]X , we have
lnN∞(F|x, α) ≤ sfat(F , α) ln

(
2en
α

)
.

4

Example 1: linear functions Recall the linear class defined by F =
{
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

p

}
and X = Bd

q for some p ≥ 1 and q ≥ 1 such that 1/p + 1/q = 1. We have shown that this class

admits a pointwise α-cover H of size
(
2
α + 1

)d
(Proposition 2 of Lecture 3). It is clear that the

projection H|x of this pointwise cover for a tree x is an α-cover for F|x, and thus N∞(F|x, α) ≤(
2
α + 1

)d
. According to previous calculations, the Dudley entropy integral bound gives Rseq(F) ≤

O(
√
d/n). So linear class is online learnable, at the same rate as in the statistical learning setting.

Example 2: non-decreasing functions We have shown that in the statistical learning setting the
class of all non-decreasing [−1,+1]-valued functions defined over R has α-covering number (n +
1)1/α and fat-shattering dimension 4/α. What about the online setting? We argue that no meaningful
covering number or fat-shattering dimension can be derived, since the problem is simply not online
learnable. To see this, first recall the tree we constructed in the proof of Proposition 1: an infinite
[0, 1]-valued tree x with root being 1/2, and the left child and right child of a node with value a at
level t being a− 1

2t+1 and a+ 1
2t+1 respectively.

The environment is almost the same as that in the proof of Theorem 2: at time t, picks
(xt, yt) = (xt(−ϵ), ϵt) where ϵ1, . . . , ϵn are i.i.d. Rademacher random variables (note the op-
posite sign of the path compared to Theorem 2). Let the loss of the problem be the square loss
ℓ(f, (x, y)) = (f(x) − y)2. Then no matter how the algorithm behaves (properly or improperly),
because yt is +1 or −1 with equal probability, the square loss of the learner is always at least
1
2 minŷ

(
(ŷ − 1)2 + (ŷ + 1)2

)
= 1. On the other hand, by the construction of the tree, we always

have xt ≤ xt′ for any t and t′ such that yt = −1 and yt′ = +1, and therefore we can always find a
non-decreasing function that passes all the points and has zero square loss. This makes the learner
suffer linear regret.

We remark without going into details that, nevertheless, the problem becomes learnable in the so-
called “transductive” setting, where the set of {x1, . . . , xT } is known to the learner ahead of the
time (but not the order of x1:T nor the outcomes y1:T of course).

Bridging classification and regression. We briefly discuss how the discussion on regression here
is useful for classification, as hinted at the end of the last section. First, note that most binary
classifier class takes the form H = {sign(f(·)) | f ∈ F} for some real-valued class F , where each
f ∈ F outputs some “score”, so that the sign of the score predicts the label and the magnitude of
the score represents the “confidence” of the prediction. In this case, there is no difference is picking
F or H as the decision space and reference class for our problem. If we pick F instead, then the
0-1 loss becomes ℓ(f, (x, y)) = 1 {yf(x) ≤ 0} and the problem involves dealing with a real-valued
function class. The problem is of course still not online learnable if Ldim(H) = ∞ since all we
have done is to represent the same problem slightly differently. However, we could now choose
another loss function ℓ′(f, (x, y)) that is an upper bound of the 0-1 loss and is online learnable as
the surrogate for optimizing 0-1 loss. Clearly, we then have

T∑
t=1

1 {ytft(xt) ≤ 0} ≤
T∑

t=1

ℓ′(ft, (xt, yt)) = inf
f∈F

T∑
t=1

ℓ′(f, (xt, yt)) + Reg(F , n),

where Reg(F , n) is defined in terms of the surrogate loss ℓ′. Since E [Reg(F , n)/n] goes to zero, we
know that the average number of mistakes of the learner is arbitrarily close to the average surrogate
loss of the best function from the reference class. This circumvents the (frustrating) impossibility
result of learning 0-1 loss in the online setting beyond trivial classes. As mentioned, this is also what
we do in the statistical learning setting for the purpose of computational efficiency.

Typical surrogate losses include the hinge loss ℓ(f, (x, y)) = max {1− yf(x), 0}, the logistic loss
ℓ(f, (x, y)) = log(1+ e−yf(x)), and many more. Note that both losses are 1-Lipschitz (with respect
to f(x)), and thus if F has a finite sequential fat-shattering dimension, the problem is indeed online
learnable according to previous discussions, leading to a meaningful bound on the total 0-1 loss of
the learner.

5

Summary. For regression problems with a G-Lipschitz loss, we have derived the following

V seq(F , n) ≤ sup
P∈∆(Zn)

E
z1:n∼P

[
sup
f∈F

1

n

n∑
t=1

(
Ez′

t∼P(·|z1:t−1) [ℓ(f, z
′
t)]− ℓ(f, zt)

)]
≤ 2Rseq(ℓ(F)) ≤ O

(
G ln3/2 n

)
· Rseq(F)

≤ O
(
G ln3/2 n

)
· sup

x
inf

0≤α≤1

(
4α+

12√
n

∫ 1

α

√
lnN2(F |x, δ)dδ

)
≤ O

(
G ln3/2 n

)
· inf
0≤α≤1

(
4α+

12√
n

∫ 1

α

√
sfat(F , δ) ln

(
2en

δ

)
dδ

)
.

It can be argued that this sequence of upper bounds is also tight and the sequential fat-shattering
dimension is in some sense the right complexity measure. At this point, we have finished all discus-
sions on statistical and online learnability for both classification and regression problems.

3 Online Algorithms for Finite Classes

We will now move on to the next main topic of this course: algorithm design for online learning.
Recall that for statistical learning, all the problems we have discussed are learnable simply via ERM,
if they are learnable at all. But for online learning, we have only characterized what determines
learnability, and if the problem is learnable, we do not know how to learn yet. To think about how
to design algorithms, we first recall the learning protocol:

For each t = 1, . . . , n,

1. learner (possibly randomly) selects ŷt ∈ D;
2. simultaneously the environment selects zt ∈ Z;
3. the learner suffers ℓ(ŷt, zt) and observes zt.

Recall that D is the decision space of the learner, which is the same as the reference class F if the
learner is proper, or a superset of F if the learner is improper (and thus more powerful). For an
oblivious environment, zt does not depend on the learner’s decisions and can be equivalently seen
as chosen ahead of the time before the learning protocol starts. On the other hand, for an adaptive
environment, zt could depend on ŷ1:t−1.

Since the first learnable class we showed is finite class, we start with the case when F is finite.
Without loss of generality, assume that the value of the loss is always in [0, 1]. Then, based on
previous discussions, there exists an algorithm with

E[Reg(F , n)] = E

[
n∑

t=1

ℓ(ŷt, zt)− inf
f∈F

n∑
t=1

ℓ(f, zt)

]
≤ O

(√
n ln |F|

)
. (3)

Finding a concrete algorithm with this guarantee will be our goal for the rest of this lecture.

3.1 Warm-up

As the first step, we consider the special case of binary classification with 0-1 loss (so Z = X ×
{−1,+1} and F ⊂ {−1,+1}X), and make a strong realizable assumption which posits that there
is always a perfect classifier in F , that is, inff∈F

∑n
t=1 1 {f(xt) ̸= yt} = 0. This can be seen as an

assumption on the expressiveness of F or equivalently as a constraint on the environment. What is
a reasonable algorithm in this case?

An obvious solution is to pick ŷt to be any classifier in F that has made no mistakes yet so far. Then,
whenever the learner makes a mistake, she has one less available choice. Since there is always a
perfect classifier in F , the learner makes at most |F| − 1 mistakes, which is also her regret. This

6

regret bound is better than Equation (3) in terms of the dependence in n (in fact, it is independent of
n), but exponentially worse in terms of |F|.
Can we do better then? The issue of this simple algorithm is that in the worst case, every time we
make a mistake, we can only eliminate one bad classifier. Ideally, we hope that a mistake will bring
to us much more information, just like doing a binary search. It turns out that we can indeed do so
by predicting the “majority vote” of the surviving classifiers, instead of just following any surviving
one. This is the “Halving” algorithm, which at time t uses the following classifier:

ŷt(x) = sign
(∑

f∈F ′

f(x)

)
, where F ′ =

{
f ∈ F :

t−1∑
τ=1

1 {f(xτ) ̸= yτ} = 0

}
.

Before analyzing the performance of this algorithm, note that this is an improper algorithm — ŷt
is not from the class F! Instead of writing down the improper function explicitly, it is often more
convenient to equivalently change the learning protocol to: 1) environment first reveals xt; 2) after
seeing xt, the learner makes a prediction −1 or +1 (in whatever way she likes); 3) environment
reveals yt. This setting is clearly more favorable to the learner if D = F , but it in fact does not
give any extra power to an improper learner with D = {−1,+1}X since specifying how the learner
predicts the label after seeing xt is exactly the same as specifying an improper strategy from D. For
example, for the Halving algorithm, what the algorithm predicts at time t is simply the majority vote
of the surviving classifiers on example xt.

It is not hard too see that the Halving algorithm makes at most O(log2 |F|) mistakes, since every
time a mistake occurs, at least half of the classifiers are removed from the surviving set F ′. Conse-
quently, the regret of the algorithm is also O(log2 |F|), which is exponentially better than the naive
strategy and is again n-independent. We remark that the realizable assumption is the key to getting
a regret bound better than Equation (3).

3.2 General algorithm

So how can we go beyond the realizable setting, which is a rather strong assumption? First of all, we
note that the two algorithms we discussed above are both deterministic. On the other hand, we now
argue that without the realizable assumption, no deterministic algorithm can guarantee sublinear
regret, even for a very simple problem where there is only one possible example x and F contains
only two constant functions f+(x) = +1 and f−(x) = −1. Indeed, because the algorithm is
deterministic, at the beginning of time t, its prediction on x is fixed and known to the environment
already. Thus, if the environment always picks yt to be the opposite of what the algorithm will
predict, then the total loss of the learner is clearly just T , while one of f− and f+ must have total
loss not larger than T/2, leading to linear regret that is at least T/2.

Also recall that in Lecture 4, we briefly mentioned that the analogue of ERM or the so-called follow-
the-leader strategy ŷt = argminf∈F

∑t−1
τ=1 ℓ(f, zτ) is not a good algorithm. The reason is clear now

— this is a deterministic algorithm and will suffer linear regret even for simple problems.

Therefore, we need to shift our focus to randomized algorithms. Also, without the realizable as-
sumption, it is clearly a bad idea to discard a classifier as soon as it makes a single mistake. Combin-
ing these two observations, one sees that a natural strategy is to randomly sample f ∈ F according
to its previous performance — those with smaller cumulative loss so far should be sampled with
higher probability. Indeed, this leads to a classic algorithm that works for general problems (not just
classification with 0-1 loss):

Hedge: at time t, sample ŷt ∈ F with probability Pr [ŷt = f] ∝ exp

(
−η

t−1∑
τ=1

ℓ(f, zτ)

)
(4)

where η > 0 is a parameter of the algorithm (called learning rate or step size). This simple algo-
rithm turns out to be fundamental and has broad applications in many areas (some of which will be
discussed in future lectures). In fact, it was (re)discovered in different areas and has many different
names, such as Hedge, multiplicative weight update, exponential weights, and so on.

Note that this is a proper algorithm. It can be viewed as doing a “soft” version of Follow-the-
Leader because when η is infinity, the distribution simply puts all the mass on the current leader

7

argminf∈F
∑t−1

τ=1 ℓ(f, zτ) and the algorithm becomes Follow-the-Leader. In fact, this mapping
(from cumulative losses to an exponential distribution) is also known as the “softmax” function.

We will show that Hedge ensures exactly regret bound (3), giving an algorithmic certification that
finite classes are online learnable. We use the following lemma that will be useful for future discus-
sions as well.
Lemma 1. For any ℓt ∈ RK and η > 0 such that ηℓt(i) ≥ −1 for all t and i, define pt ∈ ∆(K) to

be a distribution such that pt(i) ∝ exp
(
−η
∑t−1

τ=1 ℓτ (i)
)

. Then we have for any i⋆ ∈ [K],

n∑
t=1

⟨pt, ℓt⟩ −
n∑

t=1

ℓt(i
⋆) ≤ lnK

η
+ η

n∑
t=1

K∑
i=1

pt(i)ℓ
2
t (i).

We defer the proof to the end of this section. With this lemma, it is straightforward to conclude the
following.
Theorem 6. For any environments (oblivious or adaptive), Hedge (defined in Equation (4)) with

η =
√

ln |F|
T ensures Equation (3).

Proof. To apply Lemma 1, we set K = |F|, rename the element of F by 1, . . . ,K, and set ℓt(i) =
ℓ(i, zt), so that the learner exactly samples ŷt according to pt as defined in Lemma 1. We then have

E

[
n∑

t=1

ℓ(ŷt, zt)

]
= E

[
n∑

t=1

⟨pt, ℓt⟩

]
and E

[
inf
f∈F

n∑
t=1

ℓ(f, zt)

]
= E

[
min

i⋆∈[K]

n∑
t=1

ℓt(i
⋆)

]
.

Applying Lemma 1 with expectation taken on both sides, using the fact ℓt(i) ≤ 1, and plugging in
the particular learning rate η (which is optimal) proves Equation (3).

Next we prove Lemma 1 based on a potential-based argument. While the proof (or maybe even the
algorithm Hedge itself) might seem to come out of nowhere, in the future we will provide more
explanation on this.

Proof of Lemma 1. Define Lt =
∑t

τ=1 ℓτ and “potential” Φt =
1
η ln

(∑K
i=1 exp(−ηLt(i))

)
. Now,

we study how the potential evolves from time t− 1 to time t:

Φt − Φt−1 =
1

η
ln

(∑K
i=1 exp(−ηLt(i))∑K

i=1 exp(−ηLt−1(i))

)
=

1

η
ln

(
K∑
i=1

pt(i) exp(−ηℓt(i))

)

≤ 1

η
ln

(
K∑
i=1

pt(i)
(
1− ηℓt(i) + η2ℓ2t (i)

))
(e−y ≤ 1− y + y2 for all y ≥ −1)

=
1

η
ln

(
1− η ⟨pt, ℓt⟩+ η2

K∑
i=1

pt(i)ℓ
2
t (i)

)

≤ −⟨pt, ℓt⟩+ η

K∑
i=1

pt(i)ℓ
2
t (i). (ln(1 + y) ≤ y)

Summing over t, telescoping, and rearranging gives
n∑

t=1

⟨pt, ℓt⟩ ≤ Φ0 − Φn + η

n∑
t=1

K∑
i=1

pt(i)ℓ
2
t (i)

≤ Φ0 −
1

η
ln (exp(−ηLn(i

⋆))) + η

n∑
t=1

K∑
i=1

pt(i)ℓ
2
t (i)

=
lnK

η
+ Ln(i

⋆) + η

n∑
t=1

K∑
i=1

pt(i)ℓ
2
t (i).

Further rearranging finishes the proof.

8

	Online Binary Classification: Littlestone Dimension
	Online learning is strictly harder

	Online Regression
	Online Algorithms for Finite Classes
	Warm-up
	General algorithm

