
CSCI 678: Theoretical Machine Learning
Lecture 7

Fall 2024, Instructor: Haipeng Luo

1 Algorithms for Infinite Classes: Classification

In the last lecture, we discussed how to learn a finite class for binary classification problems using
the simple Halving algorithm when the realizable assumption holds and more generally using the
Hedge algorithm without making the realizable assumption. Continuing that discussion, we next
consider learning an infinite classes of binary classifiers. The goal is to construct an algorithm to
learn any class with a finite Littlestone dimension Ldim(F) = d and ensure the following:

E[Reg(F , n)] = O
(√

dn lnn
)
. (1)

We will only discuss improper algorithms this time, in which case, as discussed last time, the learn-
ing protocol is equivalent to: in each round t, 1) environment first reveals xt ∈ X ; 2) after seeing
xt, the learner makes a prediction −1 or +1; 3) finally, the environment reveals yt ∈ {−1,+1}.

Warm-up. Similar to the discussion for finite classes, we first make a realizable assumption: the
class contains a perfect classifier. Note that the Halving algorithm does not work anymore since
majority vote is not well-defined. However, the same idea of making a decision that brings most
information still applies. Instead of halving the size of the class each time we make a mistake, for
an infinite class the right analogue is to reduce the Littlestone dimension by one for each mistake we
make. Specifically, consider the following algorithm that is again improper.

Algorithm 1: Generalized Halving for Infinite Classes
Let F ′ = F . For t = 1, . . . , n,

1. Receive xt and define

F ′
− = {f ∈ F ′ | f(xt) = −1} and F ′

+ = {f ∈ F ′ | f(xt) = +1} .

2. Predict argmax
y∈{−,+}

Ldim(F ′
y).

3. Receive yt and update F ′ ← F ′
yt

.

In words, we split the current surviving class based on the prediction of a new example xt and then
follow the prediction of the subclass with a larger Littlestone dimension. In the proof of the Sauer’s
lemma analogue in Lecture 5, we argued that one of F ′

− and F ′
+ must have Littlestone dimension

strictly smaller than F ′. Therefore, whenever we make a mistake, after the update of F ′ we must
have reduced its Littlestone dimension by at least one, leading to the following guarantee.
Theorem 1. Under the realizable assumption, Generalized Halving (Algorithm 1) makes at most
Ldim(F) mistakes (which is also its regret).

This simple algorithm requires actually computing the Littlestone dimension though, and it
might not be clear how to do so in general. However, for the simple function class F ={
fθ(x) =

{
+1, if x = θ

−1, else

∣∣∣∣ θ ∈ R
}

we discussed last time, this becomes a naive algorithm that

always predicts −1 until the first example xt with label +1 appears, and afterwards always pre-
dicts according to fxt . (You are encouraged to think about how this algorithm behaves for the
high-dimensional generalization of this simple class studied in HW2.)

Lifting the realizable assumption. This generalization of Halving serves as an important building
block for developing an algorithm with guarantee Equation (1) without the realizable assumption.
To introduce the key idea of this algorithm, we first consider the following thought experiment. Note
that an adaptive environment for a classification problem can be equivalently described as deciding
(possibly randomly) a pair of X -valued tree x and {−1,+1}-valued tree y ahead of time, so that
at time t, the environment selects xt = x(s1:t−1) and yt = y(s1:t−1), where st ∈ {−1,+1} is
the prediction of the learner for example xt. Clearly, xt and yt only depend on the decisions of the
learner prior to time t, which is exactly what an adaptive environment does.

Now, for a moment suppose we know the tree x (but not y so the problem does not become trivial).
What we can do then is to construct a minimal zero-cover V of F|x, and see each tree v in this cover
as an “expert”: at time t, this expert predicts v(s1:t−1). Note that since V is a cover, by definition,
for any f ∈ F and any sequence s of the learner’s predictions, there exists an expert v so that its
prediction on the path determined by s is identical to f . Therefore, to ensure low regret against F
is exactly the same as ensuring low regret against this pool of experts.

Since the number of experts is finite, we can just apply Hedge over this set of experts. Note that
even though each expert is not exactly a classifier (that is, not a mapping from X to {−1,+1}),
the exact same analysis of Hedge still applies, leading to a regret bound of order O

(√
n ln |V |

)
according to Lemma 1 from the last lecture. Further applying Sauer’s lemma analogue, we know
ln |V | = O (d lnn), and thus the regret is of order O

(√
dn lnn

)
, as in Equation (1).

The issue of this algorithm is of course that we do not know the tree x ahead of time. Also, con-
structing the exact cover seems very expensive (each tree has 2n−1 nodes). On the other hand, note
that in this algorithm, the zero-cover V intuitively contains a lot of redundant information, since at
the end we only care about one particular path of each tree in V . Can we make use of this fact to
construct each tree in the cover partially (that is, only focus on the path that matters) and adaptively
(that is, decide what level t should be only after seeing the example xt in round t?)

Constructing the cover partially and adaptively. The answer turns out to be yes. To introduce
this method, we first define (but not explicitly construct) the following zero-cover V of F|x. Each
element in V , denoted by vT , is indexed by T , which is a set of m time steps 1 ≤ t1 < t2 < · · · <
tm ≤ n for some integer m ≤ d. This implies that V has exactly

∑d
m=0

(
n
m

)
elements. For a fixed

T , the value of vT is defined in a top-down manner. Specifically, for any path ϵ and any level t, the
corresponding node vTt (ϵ) is defined as follows:

• let F ′ = {f ∈ F | f(xs(ϵ)) = vTs (ϵ) for all s = 1, . . . , t− 1} be the subclass of “surviving”
classifiers that agree with the values of vT on the path ϵ before level t;

• split the surviving classifiers into two groups based on their prediction on the example xt(ϵ):
F ′

− = {f ∈ F ′ | f(xt(ϵ)) = −1} and F ′
+ = {f ∈ F ′ | f(xt(ϵ)) = +1};

• if t /∈ T , define vTt (ϵ) as argmaxy∈{−,+} Ldim(F ′
y); otherwise, define it as the opposite label.

You might already notice that the definition above shares some common elements with the general-
ized Halving algorithm. Indeed, we will utilize this similarity to prove that V is indeed a zero-cover.

Lemma 1. The set V defined above is a zero-cover for F|x.

Proof. For any f and ϵ ∈ {−1,+1}n, imagine running generalized Halving on the sequence
(x1(ϵ), f(x1(ϵ))), . . . , (xn(ϵ), f(xn(ϵ))) and let m be the number of mistakes it makes in this
process. Since the realizable assumption holds by construction, we know m ≤ d according to Theo-
rem 1. Let T = {t1, . . . , tm} be the time steps where it makes these m mistakes. We claim that vT
is such that vTt (ϵ) = f(xt(ϵ)) for all t = 1, . . . , n, certifying that V is indeed a zero-cover of F|x.
Indeed, on the path ϵ, by the definition of vT , its value at the root is the same as what Halving pre-
dicts if it predicts correctly, and the opposite of what it predicts if it errs, meaning vT1 (ϵ) = f(x1(ϵ))

2

always. In either case, the surviving subclass updated by Halving is the same as that in the defini-
tion of vT2 , which then by the same reasoning implies vT2 (ϵ) = f(x2(ϵ)) as well. Repeating this
argument finishes the proof.

Note that this lemma also gives a different proof for the Sauer’s lemma analogue, that is,N0(F|x) ≤∑d
m=0

(
n
m

)
. While the proof we discussed last time also provides an explicit way to recursively

construct a zero-cover, the advantage of the new method discussed here is that it in fact allows us to
construct a zero-cover partially and adaptively. Indeed, from the definition of vT , we can see that
if we only care about one particular path ϵ on the tree, which corresponds to the actual sequence of
examples x1, . . . , xn chosen by the environment, we can obtain the value of each vTt (ϵ) just in time,
that is, right after seeing xt, via the following procedure.

Algorithm 2: An expert indexed by T that outputs one path of vT on the fly
Let F ′ = F . For t = 1, . . . , n,

1. Receive xt and define

F ′
− = {f ∈ F ′ | f(xt) = −1} and F ′

+ = {f ∈ F ′ | f(xt) = +1} .

2. If t /∈ T , predict argmaxy∈{−,+} Ldim(F ′
y); otherwise, predict the opposite label. Let

yTt be this prediction.
3. Update F ′ ← F ′

yT
t

.

In other words, we can see this procedure as an expert (indexed by T) that follows the same learning
protocol: in each round t, predicts yTt after seeing xt. By definition, its n outputs exactly correspond
to the value of vT on the path that we actually care about, and it does so without any knowledge
of the rest of x. This expert can also be seen as a variant of the Generalized Halving algorithm,
with two differences: first, it deviates from Halving (by predicting the opposite) for all t ∈ T ; and
second, when updating the surviving class, it is “self-confident” and always treats its prediction yTt
as the “correct” label.

Given these experts, our final algorithm is the same as before: use Hedge to pick an expert in each
round and follow its prediction. This is summarized below:

Algorithm 3: Hedge over partial covers
Parameter: learning rate η > 0.
For each possible T that is a set of m time steps 1 ≤ t1 < t2 < · · · < tm ≤ n for some integer
m ≤ d = Ldim(F), maintain an expert indexed by T as defined in Algorithm 2.

For t = 1, . . . , n,
1. Receive xt and send it to all experts.
2. Sample an expert Tt according to the distribution:

Pr[Tt = T] ∝ exp

(
−η

t−1∑
s=1

1
{
yTs ̸= ys

})

and follow its prediction yTt
t .

3. Receive the true label yt.

The following result is then a direct application of Hedge’s regret guarantee.

Theorem 2. Algorithm 3 ensures E[Reg(F , n)] = O
(√

dn lnn
)

.

Proof. By Lemma 1 and the fact that expert indexed by T simulates the tree vT , the regret of
Algorithm 3 against F is the same as its regret against the best expert. Since the number of experts
is
∑d

m=0

(
n
m

)
≤
(
en
d

)d
(proven in Sauer’s lemma), applying Hedge’s regret guarantee for a finite

class directly proves the theorem.

3

To conclude, we have exactly achieved our goal stated in Equation (1) via an improper algorithm.
We mention in passing that achieving the same with a proper algorithm was an open question for
about a decade, but recently resolved by Hanneke et al. [2021].

2 Classification with Margin

While achieving Equation (1) algorithmically is theoretically interesting, it is practically quite lim-
ited since 1) the running time of Algorithm 3 is exponential in d and 2) as we discussed, classes
with a finite Littlestone dimension are very restricted. To address this issue, we discussed in the last
lecture that in practice we often consider some surrogate of the 0-1 loss, making the problem closer
to a regression task. We start with one simple example in this section, focusing on learning a linear
class F =

{
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

p

}
with the hinge loss ℓ(f, (x, y)) = max {1− yf(x), 0}.

As the first step, we again make a realizable assumption: inff∈F
∑n

t=1 max {1− ytf(xt), 0} = 0,
which is equivalent to saying that there exists θ⋆ ∈ Bd

p such that yt ⟨θ⋆, xt⟩ ≥ 1 holds for all
t = 1, . . . , n. Note that this is an even stronger assumption compared to the realizable assumption
with respect to 0-1 loss, and it posits that the data is not only linearly separable by some hyperplane,
but is separable with margin at least 1. In fact, a more standard form of this assumption is to
normalize the data xt, leading to a different margin parameter:

Assumption 1 (γ-margin assumption). Data is normalized such that xt ∈ Bd
q , and there exists a

constant γ > 0 and a hyperplane parameterized by θ⋆ ∈ Bd
p (for some p, q ≥ with 1

p + 1
q = 1) such

that yt ⟨θ⋆, xt⟩ ≥ γ holds for all t = 1, . . . , n.

Under this margin assumption, one trivial but inefficient approach is to construct a pointwise γ/2-
cover of F with size N (F , α) ≤ (4γ + 1)d (Proposition 2 of Lecture 3), and then run Halving over
this finite cover. Indeed, by the covering property, there exists θ′ that is the “representative” of θ⋆
and such that

yt ⟨θ′, xt⟩ = yt ⟨θ⋆, xt⟩+ yt ⟨θ′ − θ⋆, xt⟩ ≥ γ − γ/2 > 0,

which means that the realizable assumption with 0-1 loss holds for this finite cover and thus Halving
makes at most

O (lnN (F , α)) = O
(
d ln

(
4

γ
+ 1

))
(2)

mistakes.

How do we obtain a more efficient algorithm? In the following, we focus on the case p = q = 2
(see HW3 for the case p = 1 and q =∞). In this case, the margin condition yt ⟨θ⋆, xt⟩ ≥ γ implies
that the Euclidean distance of each data point xt is at least γ away from the hyperplane θ⋆. Below,
we describe a simple algorithm called Perceptron.

Algorithm 4: Perceptron Algorithm
Let θ = 0. For t = 1, . . . , n:

1. Receive xt and predict st = sign(⟨xt, θ⟩).
2. Receive yt. If yt ̸= st, update θ ← θ + ytxt.

Note that Perceptron is extremely efficient and it updates itself (the weight vector θ) if and only
if it makes a mistake. The update is simply to add the current misclassified example xt to θ with
the correct direction (determined by yt), so that the corresponding hyperplane rotates towards a
direction that corrects the previous mistake to some degree. Indeed, whenever a mistake is made,
that is yt ⟨xt, θ⟩ ≤ 0, immediately after the update the algorithm is more likely to be correct on xt
since yt ⟨xt, θ + ytxt⟩ = yt ⟨xt, θ⟩ + ∥xt∥22 and ∥xt∥22 ≥ 0. Also note that this is a deterministic
and improper algorithm (θ might not in Bd

p .).

Perceptron is guaranteed to make no more than a constant number of mistakes under the margin
assumption, as shown in the following theorem.

Theorem 3. Suppose that the γ-margin assumption holds with p = q = 2. Then Perceptron makes
at most 1/γ2 mistakes.

4

Proof. Denote the weight vector maintained by the algorithm at the beginning of round t as θt,
which means θ1 = 0 and θt+1 = θt + 1 {st ̸= yt} ytxt. We first show that the correlation between
θ⋆ and θt is non-decreasing:

⟨θt+1, θ
⋆⟩ = ⟨θt + 1 {st ̸= yt} ytxt, θ⋆⟩ ≥ ⟨θt, θ⋆⟩+ 1 {st ̸= yt} γ,

where the last step uses the γ-margin assumption. With M =
∑n

t=1 1 {st ̸= yt} being the total
number of mistakes we thus have Mγ ≤ ⟨θn+1, θ

⋆⟩ ≤ ∥θn+1∥2. Next, we show that the norm of
θn+1 cannot be too large since

∥θt+1∥22 = ∥θt + 1 {st ̸= yt} ytxt∥22
= ∥θt∥22 + 21 {st ̸= yt} ⟨θt, ytxt⟩+ 1 {st ̸= yt} ∥xt∥22
≤ ∥θt∥22 + 1 {st ̸= yt}

and thus ∥θn+1∥2 ≤
√
M . Combining these two facts gives M ≤ 1/γ2.

Even though the mistake bound 1/γ2 has a worse dependence on γ compared to Equation (2), it is on
the other hand completely dimension free, making the algorithm especially preferable for problems
with a huge dimension. Note that this phenomenon (of having no dimension dependence but worse
dependence on γ) is exactly the same as what we saw in Section 2.1 of Lecture 4, where we show
an almost dimension-independent log covering number of order 1/γ2 for the linear class. In fact,
using the guarantee of Perceptron, one can prove that the sequential fat-shattering dimension of this
linear class at scale γ is exactly of order 1/γ2 (see HW3).

3 Online Convex Optimization

How do we learn in general without the margin assumption? To introduce an efficient solution,
we come back to the general setup where at each time the learner selects ŷt ∈ F (for simplicity
we now consider proper learners) and the environment decides zt ∈ Z . Instead of discussing how
to learn a general class with a finite sequential fat-shattering dimension, which does not generally
admit an efficient algorithm, we will instead consider the case where F is a convex set and the loss
function ℓ(·, z) is convex in the first argument for any z ∈ Z . This is known as the Online Convex
Optimization (OCO) framework.

Many problems fall into this framework or can be re-parameterized to fit into this framework. For
instance, in the previous example of learning a linear class with hinge loss, one can equivalently see
the decision set as F = Bd

p and the loss function becomes ℓ(f, (x, y)) = max {1− y ⟨f, x⟩ , 0},
both of which are convex. Learning a linear class with other common losses (such as logistic loss or
square loss) is the same story. For the finite class example we studied last time, while in the natural
representation F is a discrete finite set (which is of course not convex), one can instead take F ′ to
be the simplex of distributions over the finite elements of F , which is convex, and take the expected
loss Ef∼f ′ [ℓ(f, z)] as the new loss function, which is linear (and thus convex) in f ′.

We first point out that the case when ℓ(f, z) = ⟨f, z⟩ is a linear function is in some sense universal.
Indeed, by convexity, we can upper bound the regret in the general case as

n∑
t=1

ℓ(ŷt, zt)−
n∑

t=1

ℓ(f⋆, zt) ≤
n∑

t=1

⟨ŷt − f⋆,∇ℓ(ŷt, zt)⟩ , (3)

which becomes the regret for a problem with linear loss function ⟨f,∇ℓ(ŷt, zt)⟩ at time t. Even
though the loss function now actually depends on the decision of the learner, it turns out that this is
not a problem in this formulation as we will see soon. This reduction ignores the curvature of the
original convex loss functions and might not lead to the optimal solutions. For simplicity, however,
we will mainly focus on linear loss functions, denoted as ℓ(f, z) = ⟨f, z⟩.
There are several general and efficient approaches to solve this problem. Here, we discuss one of
them called Follow-the-Regularized-Leader (FTRL), defined as

FTRL: ŷt = argmin
f∈F

t−1∑
τ=1

⟨f, zτ ⟩+
1

η
ψ(f)

5

where η > 0 is some learning rate and ψ : F → R is some regularizer that penalizes the learner for
making a decision too close to that of Follow-the-Leader (FTL) (indeed, without the regularization
term this is just FTL). We require that the regularizer is 1-strongly convex with respect to some norm
∥·∥, that is, for any f, f ′ ∈ F :

ψ(f) ≤ ψ(f ′) + ⟨∇ψ(f), f − f ′⟩ − 1

2
∥f − f ′∥2 . (4)

Strong convexity ensures that ŷt is unique. Moreover, as we will see in the analysis, strong convexity
also ensures stability of the algorithm, which turns out to be essential to ensure small regret. Last but
not least, (strong) convexity of the regularizer also ensures that the optimization required by FTRL
can be efficiently solved by any convex optimization algorithms. Before diving into the analysis, we
first consider two canonical examples.

Recovering Gradient Descent. Consider ψ(f) = 1
2 ∥f∥

2
2, which is strongly convex with respect

to the ℓ2 norm (in fact, Equation (4) holds with equality). In this case, FTRL becomes

ŷt = argmin
f∈F

t−1∑
τ=1

⟨f, zτ ⟩+
1

2η
∥f∥22 = argmin

f∈F

∥∥∥∥∥f + η

t−1∑
τ=1

zτ

∥∥∥∥∥
2

2

.

If we let ŷ′t = ŷ′t−1 − ηzt, then ŷt+1 = argminf∈F ∥f − ŷ′t∥
2
2. Note that zt corresponds to the

gradient of the loss function at ŷt in the reduction of Equation (3). Therefore, this is exactly the
(lazy version) of projected gradient descent.

Recovering Hedge. As mentioned earlier, to capture the finite class case we can take F to be a
simplex. In this case consider taking ψ(f) =

∑
i f(i) ln f(i) to be the (negative) entropy, which

is strongly convex with respect to the ℓ1 norm. Indeed, it is not hard to verify that Equation (4)
is equivalent to the well-known Pinsker’s inequality: 1

2 ∥f − f
′∥21 ≤ KL(f ′, f) (proof omitted).

Applying KKT conditions, it is also straightforward to see that the solution of FTRL is exactly
ŷt(i) ∝ exp(−η

∑t−1
τ=1 zτ (i)), which is simply Hedge.

There are many other algorithms that can be formulated as FTRL. The general regret guarantee for
FTRL is shown in the following theorem.
Theorem 4. FTRL with learning rate η and a 1-strongly-convex regularizer ψ (with respect to some
norm ∥·∥) ensures

Reg(F , n) = max
f⋆∈F

n∑
t=1

⟨ŷt − f⋆, zt⟩ ≤
R

η
+ η

n∑
t=1

∥zt∥2⋆ ,

where R = maxf∈F ψ(f)−minf∈F ψ(f) is the range of the regularizer and ∥·∥⋆ is the dual norm

of ∥·∥. If we further have ∥zt∥⋆ ≤ G for all t, then picking η =
√

R
nG2 gives Reg(F , n) ≤ 2G

√
Rn.

Again, according to the reduction of Equation (3), the condition ∥zt∥⋆ ≤ G exactly corresponds
to a Lipschitz condition of the loss function. This also provides a guidance on how to choose the
regularizer ψ — if the loss function has a small Lipschitz condition with respect to some norm
∥·∥⋆, then we should choose a regularizer that is strongly convex with respect to the dual norm ∥·∥
to exploit this fact. For example, if the loss function is Lipschitz in ℓ2 norm, then we can choose
ψ(f) = 1

2 ∥f∥
2
2 and apply gradient descent. On the other hand, if the loss function is Lipschitz in

ℓ∞ norm and the decision space F is the simplex over a finite set of size K, then we can choose
ψ to be the (negative) entropy and apply Hedge. Note that in this case, R = maxf∈F ψ(f) −
minf∈F ψ(f) ≤ lnK, and Theorem 4 recovers the Hedge regret boundO(

√
n lnK) we proved last

time.

3.1 Proof of Theorem 4

We make use of two important lemmas. The first one analyzes the regret of an imaginary strategy
called Be-the-Regularized-Leader (BTRL), which predicts ŷt+1 at time t. This is of course not
a valid algorithm since ŷt+1 depends on zt. However, understanding the regret of this imaginary
strategy turns out to be very useful.

6

Lemma 2 (Be-the-Regularized-Leader Lemma). FTRL with learning rate η ensures for any f⋆ ∈ F ,
n∑

t=1

⟨ŷt+1 − f⋆, zt⟩ ≤
R

η

Proof. Let ht(f) = ⟨f, zt⟩ for t = 1, . . . , T and h0(f) = 1
ηψ(f). Then FTRL strategy is ŷt =

argminf∈F
∑t−1

τ=0 hτ (f). We then have
n∑

t=0

ht(ŷt+1)− ht(f⋆) ≤
n∑

t=0

ht(ŷt+1)− ht(ŷn+1) (By the optimality of ŷn+1)

=

n−1∑
t=0

ht(ŷt+1)− ht(ŷn+1) ≤
n−1∑
t=0

ht(ŷt+1)− ht(ŷn) (By the optimality of ŷn)

=

n−2∑
t=0

ht(ŷt+1)− ht(ŷn) ≤ · · · ≤ 0.

Rearranging shows
n∑

t=1

⟨ŷt+1 − f⋆, zt⟩ =
n∑

t=1

ht(ŷt+1)−ht(f⋆) ≤ h0(f⋆)−h0(ŷ1) =
ψ(f⋆)−minf∈F ψ(f)

η
≤ R

η
.

With this lemma, bounding the regret of FTRL simply boils down to analyzing the stability of the
algorithm:

n∑
t=1

⟨ŷt − f⋆, zt⟩ =
n∑

t=1

⟨ŷt+1 − f⋆, zt⟩+
n∑

t=1

⟨ŷt − ŷt+1, zt⟩ ≤
R

η
+

n∑
t=1

∥ŷt − ŷt+1∥ ∥zt∥⋆ . (5)

The next lemma then shows that FTRL is indeed stable thanks to the strong convexity of the regu-
larizer.
Lemma 3. FTRL with learning rate η and a 1-strongly-convex regularizer ψ (with respect to norm
∥·∥) ensures ∥ŷt − ŷt+1∥ ≤ η ∥zt∥⋆ for all t = 1, . . . , T .

Proof. Let Ht(f) =
∑t−1

τ=1 ⟨f, zτ ⟩ +
1
ηψ(f) so that ŷt = argminf∈F Ht(f) and ŷt+1 =

argminf∈F Ht+1(f). By strong convexity and first order optimality, we have

Ht(ŷt) ≤ Ht(ŷt+1) + ⟨∇Ht(ŷt), ŷt − ŷt+1⟩ −
1

2η
∥ŷt − ŷt+1∥2 ≤ Ht(ŷt+1)−

1

2η
∥ŷt − ŷt+1∥2 .

By the same reasoning, we also have

Ht+1(ŷt+1) ≤ Ht+1(ŷt) + ⟨∇Ht+1(ŷt+1), ŷt+1 − ŷt⟩ −
1

2η
∥ŷt+1 − ŷt∥2 ≤ Ht+1(ŷt)−

1

2η
∥ŷt+1 − ŷt∥2 .

Combining and rearranging give

∥ŷt − ŷt+1∥2 ≤ η(Ht(ŷt+1)−Ht+1(ŷt+1) +Ht+1(ŷt)−Ht(ŷt))

= η(⟨ŷt, zt⟩ − ⟨ŷt+1, zt⟩)
= η ⟨ŷt − ŷt+1, zt⟩ ≤ η ∥ŷt − ŷt+1∥ ∥zt∥⋆ .

Further dividing both sides by ∥ŷt − ŷt+1∥ finishes the proof.

Combining this lemma with Equation (5) proves Theorem 4. Also note that the fact that zt might
depend on ŷt (which is indeed the case in the reduction of Equation (3)) does not affect the result,
as mentioned earlier.

References
Steve Hanneke, Roi Livni, and Shay Moran. Online learning with simple predictors and a com-

binatorial characterization of minimax in 0/1 games. In Conference on Learning Theory, pages
2289–2314. PMLR, 2021.

7

	Algorithms for Infinite Classes: Classification
	Classification with Margin
	Online Convex Optimization
	Proof of Theorem 4

