
CSCI 678: Theoretical Machine Learning
Lecture 8

Fall 2024, Instructor: Haipeng Luo

1 From Values to Algorithms — A General Recipe

In the last two lectures, we discussed several online learning algorithms. One might wonder: how to
come up with an algorithm, especially when facing a new problem? Is there a general principle or
even a concrete recipe to design algorithms?

To answer this question, we come back to the general setup and its minimax formulation:

V seq(F , n) = ⟪ inf
qt∈∆(D)

sup
zt∈Z

Eŷt∼qt⟫
n

t=1

[
Reg(F , n)

n

]
.

Previously, we derived a sequence of upper bounds on this minimax expression to study learnability,
without having any concrete algorithms. However, in principle, one can be ambiguous and ask for
the exact minimax optimal algorithm, which at time t predicts ŷt drawn from

argmin
qt∈∆(D)

sup
zt∈Z

Eŷt∼qt

[
⟪ inf

qτ∈∆(D)
sup
zτ∈Z

Eŷτ∼qτ⟫
n

τ=t+1

Reg(F , n)

]

= argmin
qt∈∆(D)

sup
zt∈Z

Eŷt∼qt

[
⟪ inf

qτ∈∆(D)
sup
zτ∈Z

Eŷτ∼qτ⟫
n

τ=t+1

[
n∑

s=t

ℓ(ŷs, zs)− inf
f∈F

n∑
s=1

ℓ(f, zs)

]]

= argmin
qt∈∆(D)

sup
zt∈Z

(
Eŷt∼qt [ℓ(ŷt, zt)] + ⟪ inf

qτ∈∆(D)
sup
zτ∈Z

Eŷτ∼qτ⟫
n

τ=t+1

[
n∑

s=t+1

ℓ(ŷs, zs)− inf
f∈F

n∑
s=1

ℓ(f, zs)

])
.

To simplify notation, recursively define the (unnormalized) conditional value of the game given the
past decisions z1:t of the environment as

Vn(z1:t) = inf
q∈∆(D)

sup
z∈Z

(Eŷ∼q [ℓ(ŷ, z)] + Vn(z1:t, z))

with Vn(z1:n) = − inf
f∈F

n∑
t=1

ℓ(f, zt).
(1)

In words, Vn(z1:t) is the optimal regret (offset by the loss already suffered) one can achieve against
the worst-case future, given the past t steps. Clearly, we have V seq(F , n) = 1

nVn(∅). With this
conditional value, the minimax strategy becomes

qt = argmin
q∈∆(D)

sup
z∈Z

(Eŷ∼q [ℓ(ŷ, z)] + Vn(z1:t−1, z)) .

In principle, finding qt is a dynamic program. For most cases, however, there is no simple closed-
form solution or efficient way to solve it exactly. Instead, we aim for finding an approximate so-
lution. One general way to do so is to search for a relaxation of the conditional value. A relax-
ation Reln is a sequence of functions that map the past decisions of the environment z1:t to a real

value for each t = 1, . . . , n (just like the conditional value Vn). It is called admissible if for any
z1, . . . , zT ∈ Z ,

∀t = 0, . . . , n− 1, Reln(z1:t) ≥ inf
q∈∆(D)

sup
z∈Z

(Eŷ∼q [ℓ(ŷ, z)] + Reln(z1:t, z))

and Reln(z1:n) ≥ − inf
f∈F

n∑
t=1

ℓ(f, zt).
(2)

Comparing Equation (1) and Equation (2), it is clear that Vn(z1:t) ≤ Reln(z1:t) always holds, that
is, admissible relaxation is indeed an upper bound of the conditional value. More importantly, if we
replace the conditional value by the relaxation in the minimax optimal strategy, that is,

qt = argmin
q∈∆(D)

sup
z∈Z

(Eŷ∼q [ℓ(ŷ, z)] + Reln(z1:t−1, z)) , (3)

then the regret of this algorithm is bounded by Reln(∅). In fact, we do not even need to solve
Equation (3) exactly — as long as qt is such that

sup
z∈Z

(Eŷ∼qt [ℓ(ŷ, z)] + Reln(z1:t−1, z)) ≤ Reln(z1:t−1), (4)

the regret is bounded by Reln(∅) (note that the solution of Equation (3) always satisfies the above
by admissibility). To see this, we just need to repeatedly peel off each term in the regret:

E [Reg(F , n)] ≤ E

[
n∑

t=1

ℓ(ŷt, zt) + Reln(z1:n)

]

≤ E

[
n−1∑
t=1

ℓ(ŷt, zt) + sup
z

(Eŷ∼qn [ℓ(ŷ, z)] + Reln(z1:n−1, z))

]

≤ E

[
n−1∑
t=1

ℓ(ŷt, zt) + Reln(z1:n−1)

]
≤ · · · ≤ Reln(∅).

Therefore, as long as we can find an admissible relaxation that is easy to compute and that is
not too large, we have a reasonable algorithm. But how to we find such a good relaxation? In
fact, in some sense we have seen one already while discussing learnability. Recall that the value
of the game is bounded by (twice) the sequential Rademacher complexity, which after scaling
means Vn(∅) ≤ supz Eϵ

[
supf∈F 2

∑n
t=1 ϵtℓ(f, zt(ϵ))

]
. We generalize the concept of sequential

Rademacher complexity and define:

Rn(z1:t) = sup
z

Eϵt+1:n
sup
f∈F

(
2

n∑
s=t+1

ϵsℓ(f, zs−t(ϵt+1:s−1))−
t∑

s=1

ℓ(f, zs)

)
, (5)

where z ranges over all Z-valued tree with depth n − t, which represents the worst-case future. It
can be shown that sequential Rademacher complexity is indeed an admissible relaxation.
Theorem 1. The generalized sequential Rademacher complexity Equation (5) is an admissible re-
laxation.

The proof is based on the same symmetrization technique we have discussed before. Roughly speak-
ing, the conditional value given z1:t is in terms of the difference between the total future loss of the
learner and the benchmark. The first t terms of the benchmark appear as the second summation in
Equation (5), while the last n − t terms is combined with the future total loss of the learner via
symmetrization to become the first summation of Equation (5). We leave the complete proof as an
exercise.

With this relaxation, we can assert that the strategy defined in Equation (4) is definitely a good
algorithm with low regret — as mentioned the regret is bounded as Reln(∅) = Rn(∅), which is
exactly the original sequential Rademacher complexity (scaled by n) and is very close to the value
of the game according to previous lectures. However, is there a way to efficiently compute this
relaxation? Unfortunately, the answer is still no usually, especially due to the part supz . Neverthe-
less, this relaxation is already much manageable compared to the conditional value, and very often,
further bounding this relaxation via simple algebra will lead to another relaxation that is efficiently

2

computable and at the same time small enough. This gives a general “recipe” to design an online
learning algorithm:

1. Start with the sequential Rademacher complexity Equation (5).
2. Derive an upper bound of it to get a relaxation that is easy to compute.
3. Prove that the relaxation is admissible.
4. Derive the final algorithm using Equation (3) or Equation (4).

Figure 1: A general recipe to derive an online learning algorithm

Let’s now see a concrete example. Consider the case when the loss function is linear: ℓ(f, z) =
⟨f, z⟩, which, as discussed last time, is representative for all convex losses. Further restrict our
attention to F = Z = Bd

2 , the unit ℓ2 ball.

Step 1. The generalized sequential Rademacher complexity in this case reduces to

Rn(z1:t) = sup
z

Eϵt+1:n
sup
f∈Bd

2

〈
f, 2

n∑
s=t+1

ϵszs−t(ϵt+1:s−1)−
t∑

s=1

zs

〉

= sup
z

Eϵt+1:n

∥∥∥∥∥2
n∑

s=t+1

ϵszs−t(ϵt+1:s−1)− Zt

∥∥∥∥∥
2

. (define Zt =
∑t

s=1 zs)

Step 2. Using Jensen’s equality, we upper bound it as (similarly to Question (a) of HW1)

Rn(z1:t) ≤ sup
z

√√√√Eϵt+1:n

∥∥∥∥∥2
n∑

s=t+1

ϵszs−t(ϵt+1:s−1)− Zt

∥∥∥∥∥
2

2

= sup
z

√√√√4Eϵt+1:n

[
n∑

s=t+1

∥zs−t(ϵt+1:s−1)∥22

]
+ ∥Zt∥22

(all other terms have zero mean)

≤
√
4(n− t) + ∥Zt∥22,

and take the last simple expression as the relaxation: Reln(z1:t) =
√
4(n− t) + ∥Zt∥22.

Step 3. Next, we prove that this relaxation is indeed admissible. The second line of Equation (2)
holds with equality. To show the first line, we consider a deterministic and proper strategy such that

inf
q∈∆(D)

sup
z∈Z

(Eŷ∼q [ℓ(ŷ, z)] + Reln(z1:t, z)) ≤ inf
ŷ∈Bd

2

sup
z∈Bd

2

(
⟨ŷ, z⟩+

√
4(n− t− 1) + ∥Zt + z∥22

)
≤ inf

ŷ∈Bd
2

sup
z∈Bd

2

(
⟨ŷ, z⟩+

√
4(n− t) + ∥Zt∥22 + 2 ⟨Zt, z⟩

)
.

Note that the optimal ŷ must be collinear with Zt, for otherwise, ŷ has some component that is
perpendicular to Zt, and the environment could potentially add a component in the same direction
to increase the term ⟨ŷ, z⟩, while keeping the rest unchanged. Therefore, it is best for ŷ to have no
component perpendicular to Zt. Furthermore, it is also easy to see that the optimal ŷ must be in
the opposite direction of Zt (try to convince yourself), meaning that the optimal ŷ can be written as
−αZt for some coefficient α ∈ A = (0, 1/∥Zt∥2] (such that ŷ ∈ Bd

2). Using this form we arrive at

inf
q∈∆(D)

sup
z∈Z

(Eŷ∼q [ℓ(ŷ, z)] + Reln(z1:t, z))

3

≤ inf
α∈A

sup
z∈Bd

2

(
−α ⟨Zt, z⟩+

√
4(n− t) + ∥Zt∥22 + 2 ⟨Zt, z⟩

)
≤ inf

α∈A
sup
β∈R

(
−αβ +

√
4(n− t) + ∥Zt∥22 + 2β

)
(replacing ⟨Zt, z⟩ with β)

= inf
α∈A

1

2

(
1

α
+ α

(
4(n− t) + ∥Zt∥22

))
(optimal β is 1

2α2 − 2(n− t)− 1
2∥Zt∥22)

=

√
4(n− t) + ∥Zt∥22 = Rn(z1:t). (optimal α is 1√

4(n−t)+∥Zt∥2
2

)

This shows that the relaxation is indeed admissible.

Step 4. In fact, the derivation above also implies that the following algorithm satisfies Equation (4):

ŷt+1 = −αt

t∑
s=1

zs, where αt =
1√

4(n− t) + ∥Zt∥22
,

and we know that its regret is bounded by Reln(∅) = 2
√
n. Note that this is very close to the

gradient descent algorithm discussed last time:

ŷt+1 = argmin
ŷ∈Bd

2

∥ŷ + ηZt∥22 =

{
−ηZt, if η ∥Zt∥2 < 1,
−Zt

∥Zt∥2
, else.

While both algorithms enjoy O(
√
n) regret, the former is slightly simpler without any explicit pro-

jection or learning rate.

Summary. This is just one simple example to illustrate the power of the general recipe. Using
this framework one can in fact recover many other algorithms, such as FTRL (and hence Hedge as
well), and also derive others that were not known before. This shows that existing algorithms are
not “methods that just work” — they can in fact all be derived in a principled way, starting from the
fundamental sequential Rademacher complexity.

2 Multi-Armed Bandits

At this point, we have finished all discussions on the learnability and concrete algorithms for online
learning problems with “full information”, where full information refers to the fact that at the end
of each round, the decision of the environment zt is completely revealed to the learner. With this
information, the learner can reason about the loss they would have suffered if a different action ŷ
would have been taken, by simply evaluating ℓ(ŷ, zt).

As discussed in Lecture 1, while this full-information model captures many problems, there is also
a wide range of problems where zt is not completely revealed and the learner is required to learn
under partial information or limited feedback. In the rest of this course, we focus on some canonical
problems in such more challenging settings. Unfortunately, it is not clear how to apply similar min-
imax machinery we used before to directly study the learnability with partial information. Instead,
we will discuss several key algorithmic ideas to tackle these problems.

We start with one of the most fundamental problems in this area: Multi-armed Bandits (MAB),
which we briefly mentioned in Lecture 1. Using previous notation, MAB is a problem with D =
F = {1, . . . ,K} ≜ [K] for some K, Z = [0, 1]K , and ℓ(ŷ, z) = z(ŷ). Instead of seeing zt at
the end of round t, the learner only observes one coordinate of zt: zt(ŷt), that is, the coordinate
chosen by the learner. For simplicity, we only consider oblivious environments, and for conversion,
we will deploy slightly different notation and describe the problem equivalently as follows: The
environment first decides n loss vectors: ℓ1, . . . , ℓn ∈ [0, 1]K (knowing the learner’s algorithm).
Then for each t = 1, . . . , n, learner selects at ∈ [K], suffers and observes loss ℓt(at).

The name “multi-armed bandits” comes from the original motivation of this problem: imagine a
gambler in a casino who has money to play slot machines for n times. The question is then how the
gambler should sequentially allocate these n plays to the K available slot machines, with the goal

4

of winning as much as possible. In the formulation above, the vector ℓt naturally encodes the loss
(equivalently negative reward) of playing each machine at time t, and at corresponds to the actual
machine that the gambler selects. Of course, after playing this machine, the gambler only observes
the loss of this machine, which is ℓt(at), and has no information on what they would have received
if a different machine was chosen, that is, ℓt(a) for any other a ̸= at. This aspect is exactly captured
by this partial information model.

A slot machine is sometimes called a “one-armed bandit”, hence the name multi-armed bandit for
this problem. Because of this, we sometimes call each action a ∈ [K] an “arm”. This simple model
and its variant in fact capture many real-life applications, with recommendation systems as one of
the most notable examples — arms correspond to items to recommend and losses correspond to the
user’s response (e.g. whether the user clicks on the recommended item or not).

In theory, MAB is also a canonical example to understand the trade-off between exploration and
exploitation, which is the key difficulty of this problem. Indeed, on the one hand, it is tempting
to select arms that have suffered small losses before (exploitation), but on the other hand, there is
also an incentive to select other arms just to find out if they can actually lead to even smaller losses
(exploration). Having a good balance between these two is the key to design good algorithms for
MAB and in general any other learning problems with partial information.

Before we discuss how to do so, recall that as usual, the goal of the learner is to minimize regret,
defined as

Regn =

n∑
t=1

ℓt(at)− min
a∈[K]

n∑
t=1

ℓt(a),

where we abbreviate Reg(F , n) as Regn since F is now fixed to [K]. So far we have made no
assumption on how the loss vectors ℓ1, . . . , ℓn are generated. This is called the adversarial setting.
However, the stochastic setting is equally important in the literature. In a stochastic setting, each
arm a has a underlying loss distribution with mean µ(a), and the losses ℓ1(a), . . . , ℓn(a) are i.i.d.
samples of this distribution. In this case we usually care about the so-called pseudo regret:

Regn = E

[
n∑

t=1

µ(at)− min
a∈[K]

n∑
t=1

µ(a)

]
.

Compared to E [Regn], the difference is that we push the expectation inside the “min”, which also
means Regn ≤ E [Regn]. Dealing with pseudo regret allows us the ignore the deviation of the
samples ℓ1(a), . . . , ℓn(a) from the mean µ(a) in the objective, which is natural in the stochastic
setting and also allows us the derive tighter bounds as we will see soon. We discuss these two
settings in the following two sections respectively.

3 Adversarial MAB

Note that if we could observe the entire loss vector ℓt at the end of each round, then this is simply
a problem of learning with a finite class, and we have discussed that the Hedge algorithm achieves
O(

√
n lnK) regret in this case. The difficulty is of course that we do not have the entire loss vector

ℓt. However, a key technique for dealing with adversarial problems with partial information is to
construct some estimator of the unknown information, and then plug this into an algorithm for the
full information setting. For MAB, this means that we need to construct a good estimator ℓ̂t for ℓt,
and then simply plug this into the Hedge algorithm.

How do we construct such estimators? It might seem impossible to do so in the adversarial setting
given that ℓt is completely arbitrary; indeed, how can seeing one coordinate of an arbitrary vector tell
us anything about the rest of it? It turns out that, however, randomness can help here. Specifically,
if we choose at randomly according to a fully-supported distribution such that the probability of
selecting arm a is pt(a) > 0, then we can construct the importance-weighted estimator, defined as

∀a ∈ [K], ℓ̂t(a) =
ℓt(a)

pt(a)
1{a = at} =

{
ℓt(at)
pt(at)

if a = at,
0 else.

5

Clearly, the estimator is computable using only the information ℓt(at). More importantly, it is
unbiased: for any a ∈ [K],

Et

[
ℓ̂t(a)

]
= (1− pt(a))× 0 + pt(a)

ℓt(a)

pt(a)
= ℓt(a)

where Et[·] is the conditional expectation with respect to the random draw of at given everything
before round t. We now plug this estimator into the Hedge algorithm and obtain the classic ad-
versarial MAB algorithm called Exp3 (which stands for Exponential-weight for Exploration and
Exploitation): at time t, sample at ∼ pt ∈ ∆(K) where

∀a ∈ [K], pt(a) ∝ exp

(
−η

t−1∑
τ=1

ℓ̂τ (a)

)
(Exp3)

for some learning rate η > 0.

Before analyzing the regret of this algorithm, let’s first see why this algorithm makes sense, and in
particular, where is the aforementioned exploration-exploitation trade-off? The exploitation part is
basically executed by the Hedge algorithm: arms with smaller estimated losses are selected with
higher probability. On the other hand, the exploration part is somewhat implicit. Indeed, whenever
an arm at is selected (maybe due to exploitation), the probability of selecting this arm next time
is always decreased (or at least not increased), which will then encourage the algorithm to explore
other actions. This is due to the structure of the estimator ℓ̂t so that only the selected action at can
have non-zero loss, while all the other actions have estimated loss 0.

To better understand the importance of this implicit exploration, consider the case where the losses
are negative: ℓt ∈ [−1, 0]K (or equivalently their magnitude corresponds to reward). Then Exp3
should not work anymore, since whenever an arm at is selected, its probability of being selected
next time gets even larger (again due to the structure of ℓ̂t). This clearly lacks sufficient exploration
and will suffer linear regret in the worst case.1

We now analyze the regret of Exp3. It might be tempting to conclude that, just like Hedge, Exp3
achieves regret E[Regn] = O(

√
n lnK) as well — after all, we only care about expected regret here

and the estimators are all unbiased. However, a closer look at the Hedge analysis, that is, Lemma 1
of Lecture 6, included below again with the generic loss vector ℓt renamed as ℓ̂t for ease of reading,
reveals that its regret is O(C

√
n lnK) for losses bounded by C > 0.

Lemma 1. For any ℓ̂t ∈ RK and η > 0 such that ηℓ̂t(a) ≥ −1 for all t and a, define pt ∈ ∆(K) to

be a distribution such that pt(a) ∝ exp
(
−η
∑t−1

τ=1 ℓ̂τ (a)
)

. Then we have for any a⋆ ∈ [K],

n∑
t=1

〈
pt, ℓ̂t

〉
−

n∑
t=1

ℓ̂t(a
⋆) ≤ lnK

η
+ η

n∑
t=1

K∑
a=1

pt(a)ℓ̂
2
t (a).

Without loss of generality we have assumed that the true losses are in [0, 1], but how large can ℓ̂t(a)
be? It can in fact be unbounded due to the inverse probability weighting! If we try to explicitly
enforce a lower bound γ for the probabilities to make sure that the estimators are never larger than
1/γ (there are many different ways to do so), then accordingly we will pay extra γT regret due to
this constraint. Even trading off γ optimally will at best lead to regret of order O(T 2/3) (details
omitted).

However, the magic of Hedge is that it somehow only cares about the variance of the estimators
(which can still be unbounded as shown below), and more importantly, it has some intrinsic variance
cancellation effect which eventually allows it to still ensure O(

√
T) regret. This is shown in the

following theorem.

Theorem 2. With η =
√

lnK
nK , Exp3 ensures E [Regn] = O(

√
nK lnK).

1This can be fixed by shifting the loss to [0, 1]K again.

6

Proof. Since ℓ̂t(a) ≥ 0 for all t and a, we can directly apply Lemma 1 and get for a⋆ ∈
argmina∈[K]

∑n
t=1 ℓt(a),

n∑
t=1

〈
pt, ℓ̂t

〉
−

n∑
t=1

ℓ̂t(a
⋆) ≤ lnK

η
+ η

n∑
t=1

K∑
a=1

pt(a)ℓ̂
2
t (a).

Noting that the conditional variance (or rather the second moment) of the estimator is Et[ℓ̂
2
t (a)] =

pt(a)× ℓ2t (a)

p2
t (a)

=
ℓ2t (a)
pt(a)

and thus taking expectation on both sides we have

E

[
n∑

t=1

ℓt(at)−
n∑

t=1

ℓt(a
⋆)

]
≤ lnK

η
+ ηE

[
n∑

t=1

K∑
a=1

pt(a)
ℓ2t (a)

pt(a)

]
≤ lnK

η
+ ηnK.

With the optimal tuning η =
√

lnK
nK we have thus shown E[Regn] = O(

√
nK lnK).

We make two remarks for this proof. First, as we argued earlier, the fact that ℓ̂t(a) is non-negative is
important for the algorithm to work, and this is also reflected in the proof since it makes sure that the
condition ηℓ̂t(i) ≥ −1 of Lemma 1 holds. Second, the potentially large variance of the estimator
Et[ℓ̂

2
t (a)] =

ℓ2t (a)
pt(a)

is automatically canceled by another pt(a) term in
∑n

t=1

∑K
a=1 pt(a)ℓ̂

2
t (a), which

is rather remarkable.

Compared to the full information setting, the regret bound of Exp3 has an extra
√
K factor, which

can be seen as the price of learning with bandit feedback and is in fact unavoidable as we will show
soon. (The

√
lnK factor in the regret bound, however, is unnecessary and can be removed by using

different algorithms.)

4 Stochastic MAB

Next, we move on to the stochastic setting where the losses for each arm a are i.i.d. samples of
a fixed distribution with mean µ(a) ∈ [0, 1], and we aim to minimize pseudo regret. Of course,
as mentioned, pseudo regret is bounded by the actual expected regret, and the stochastic setting is
just a special case of the adversarial setting, so we can still directly apply Exp3 and get Regn =

O(
√
nK lnK). However, by exploiting the stochasticity we can in fact achieve an even better

bound, and perhaps more importantly, this is achieved via a general optimistic principle that is
useful for many other problems as well.

Specifically, since the losses are i.i.d. samples with mean µ(a), it is more than natural to keep track
of the empirical mean of arm a up to each time t:

µ̂t(a) =
1

mt(a)

t∑
τ=1

1{aτ = a}ℓτ (a) where mt(a) =

t∑
τ=1

1{aτ = a},

as an estimate for µ(a). Intuitively, the more often we select an arm (that is, the larger mt(a) is), the
better this estimate is. Indeed, one can show the following concentration lemma:
Lemma 2. No matter what the learner’s strategy is, we have with probability at least 1 − 2K/n,
for every arm a ∈ [K] and every round t = 1, . . . , n:

|µ̂t(a)− µ(a)| ≤ 2

√
lnn

mt(a)
.

This lemma can be proven by the standard Hoeffding’s inequality, except for the extra technicality
needed to deal with the fact that mt(a) is also random. We omit the proof for simplicity. Note
that this lemma captures the even more intuitive tension between exploration and exploitation in
stochastic MAB — on the one hand, we want to exploit by picking the empirically best action
argmina µ̂t(a), but on the other hand, we also need to explore so that all actions are picked fre-
quently enough to make sure that µ̂t(a) is indeed a good approximation of µ(a). So how should we
balance exploration and exploitation in this case?

7

Naive Exploration. Based on the intuition above, one naive approach would be “Explore-then-
Exploit”: first spend Kn0 (for some parameter n0) rounds for uniform exploration, that is, pick
every action for exactly n0 times; then, in all remaining rounds, exploit by always picking the
empirically best action based on the exploration data, that is, at ∈ argmina∈[K] µ̂Kn0

(a) for all
t > Kn0.

While simple, this approach is also intuitively wasteful due to its uniform exploration: every action
is selected equally often in the exploration phase even if some of them look much worse than others.
A quick analysis shows that such naive exploration indeed leads to suboptimal regret.
Theorem 3. The Explore-then-Exploit algorithm described above achieves

Regn ≤ Kn0 + 4n

√
lnn

n0
+ 2K,

which is of order O
(
n

2
3 (K lnn)

1
3

)
after picking the optimal n0.

Proof. Let E denote the event stated in Lemma 2, which happens with probability at least 1−2K/n.
Under this event, we know that after the exploration phase, we have for all a ∈ [K],

|µ̂Kn0(a)− µ(a)| ≤ 2

√
lnn

n0
.

Therefore, in the exploitation phase, the loss of the selected action at ∈ argmina∈[K] µ̂Kn0(a) is
close to that of the optimal action a⋆ ∈ argmina∈[K] µ(a) in the following sense:

µ(at)− µ(a⋆) ≤ µ̂Kn0
(at)− µ̂Kn0

(a⋆) + 4

√
lnn

n0
≤ 4

√
lnn

n0
.

Consequently, under event E, we have

n∑
t=1

(µ(at)− µ(a⋆)) =

Kn0∑
t=1

(µ(at)− µ(a⋆)) +

n∑
t=Kn0+1

(µ(at)− µ(a⋆))

≤ (K − 1)n0 + (n−Kn0) · 4
√

lnn

n0
≤ Kn0 + 4n

√
lnn

n0
.

Further bounding the regret trivially by n when the event E does not hold, which happens with
probability at most 2K/n, proves the claimed pseudo regret bound.

Such a regret bound is suboptimal since, as mentioned, applying Exp3 directly already ensures
Regn = O(

√
nK lnK). To improve the algorithm, we need a better and more adaptive exploration

scheme. In the next lecture, we will discuss a simple method to achieve so.

8

	From Values to Algorithms — A General Recipe
	Multi-Armed Bandits
	Adversarial MAB
	Stochastic MAB

