
CSCI 678: Theoretical Machine Learning
Lecture 9

Fall 2024, Instructor: Haipeng Luo

1 Adaptive Exploration for Stochastic MAB

Recall the stochastic K-armed bandit problem discussed last time: for each time t = 1, . . . , n, the
loss ℓt(a) ∈ [0, 1] for each arm a is independently drawn from a fixed distribution with mean µ(a);
the learner selects one of the K arms at ∈ [K] and observes only ℓt(at). The goal of the learner is
to minimize her pseudo regret, defined as

Regn = E

[
n∑

t=1

µ(at)−
n∑

t=1

µ(a⋆)

]
.

where a⋆ ∈ argmina∈[K]

∑n
t=1 µ(a) is an optimal arm.

In the last lecture, we saw that the naive Explore-then-Exploit approach achieves suboptimal regret
due to its uniform and nonadaptive exploration. Now, we introduce a more adaptive exploration
scheme based on a general principle called “optimism in face of uncertainty”, which is useful for
many other problems with partial information. The main idea is the following: among all plausible
environments that are consistent with the data observed so far, the learner should be optimistic and
act as if the environment is the best possible one. To see what this means and how to apply it to our
problem, first recall the concentration lemma discussed last time:

Lemma 1. No matter what the learner’s strategy is, we have with probability at least 1 − 2K/n,

for every arm a ∈ [K] and every round t = 1, . . . , n: |µ̂t(a)− µ(a)| ≤ 2
√

lnn
mt(a)

.

Here, mt(a) =
∑t

τ=1 1{aτ = a} is the number of times arm a has been pulled up to round t and
µ̂t(a) =

1
mt(a)

∑t
τ=1 1{aτ = a}ℓτ (a) is the empirical average of the observed losses for arm a up

to around t. This lemma tells us exactly what the plausible environments are given the data observed
so far. Among them, the most favorable one to the learner is the one with the smallest expected loss,
that is, when the mean of the loss for each action a is the following lower confidence bound (LCB):

LCBt(a)
def
= µ̂t−1(a)− 2

√
lnn

mt−1(a)
.

Therefore, an optimistic learner would wishfully believe that this is the true environment and natu-
rally selects

at ∈ argmin
a∈[K]

LCBt(a). (1)

Traditionally, this algorithm was derived for the reward (instead of loss) setting and thus optimism
means playing an action with the highest upper confidence bound, hence the name UCB algorithm.
For convention, we stick with the same name (even though technically it really should be called the
LCB algorithm).

A couple of remarks on the UCB algorithm are in order. First, note that mt−1(a) is initially 0,
leading to negative infinity for LCBt(a), so the algorithm will be forced to pick each action ex-
actly once for the first K rounds. Afterwards, the two terms in LCBt(a) are essentially playing the
role of exploitation and exploration respectively: the first term suggests picking actions with low
empirical mean (exploitation), while the second term suggests picking actions that have not been
selected often enough (exploration). Together, they achieve an adaptive trade-off between exploita-
tion and exploration, which does not waste many rounds to explore an infrequently selected action
if it already looks pretty bad. Also note that optimism is indeed important to derive exploration —
think about what would happen if we instead adopt pessimism and pick the arm with the smallest
upper confidence bound µ̂t−1(a) + 2

√
(lnn)/mt−1(a). Moreover, in contrast to Exp3, UCB is a

deterministic algorithm, that is, no randomness is used in deciding which actions to play.

To analyze the UCB algorithm, we start by rewriting the pseudo regret as follows:

Regn = E

[
n∑

t=1

µ(at)−
n∑

t=1

µ(a⋆)

]
= E

[
n∑

t=1

K∑
a=1

∆a1{at = a}

]
=

∑
a:∆a>0

∆aE[mn(a)] (2)

where ∆a = µ(a) − µ(a⋆) is the suboptimality gap of action a. For the UCB algorithm, the
suboptimality gap of an action and the number of times it has been pulled can be connected using
the following key lemma.

Lemma 2. Under the event stated in Lemma 1, UCB ensures ∆at
≤ 4

√
lnn

mt−1(at)
for any t =

1, . . . , n.

Proof. This is a direct consequence of optimism:

∆at = µ(at)− µ(a⋆) ≤ µ(at)− LCBt(a
⋆) (Lemma 1)

≤ µ(at)− LCBt(at) (since at has the smallest LCB)

≤ 4
√

lnn
mt−1(at)

, (by the definition of LCB and Lemma 1)

which completes the proof.

This simple fact immediately tells us in total how many times each action can be selected by UCB,
which also leads to a gap-dependent logarithmic (in n) pseudo regret bound.

Theorem 1. Under the event stated in Lemma 1, we have mn(a) ≤ 16 lnn
∆2

a
+ 1 for every action a.

Consequently, the pseudo-regret of UCB satisfies Regn = O(
∑

a:∆a>0
lnn
∆a

).

Proof. For each action a, applying Lemma 2 with t being the last time a is selected shows: ∆a ≤
4
√

lnn
mn(a)−1 , which, after rearranging, proves the first statement. Therefore, if we denote the event

stated in Lemma 1 by E, then the pseudo regret (recall Eq. (2)) of UCB can be bounded as:

Regn ≤ Pr(E)×
∑

a:∆a>0

∆aE [mn(a) | E] + Pr(¬E)× n

≤
∑

a:∆a>0

(
16 lnn

∆a
+∆a

)
+ 2K = O

(∑
a:∆a>0

lnn

∆a

)
,

which proves the second statement.

Note that this is an instance-dependent regret bound: it depends on the suboptimality gaps of a
particular instance. Treating these gaps as constants, we see that this bound enjoys logarithmic
dependence on n, which is an exponential improvement compared to the O(

√
nK lnK) bound

achieved by Exp3.

In this instance-optimal bound, the smaller the gaps, the larger the pseudo regret, which makes sense
to some degree because smaller gaps make it harder to distinguish the optimal actions from the rest.
On the other than, however, if an action really has a tiny suboptimality gap, then by definition

2

selecting it does not lead to large regret and thus there is really no point in distinguishing it from
the optimal actions. Building on this intuition, in HW4 you will further prove that UCB indeed also
guarantees O(

√
nK lnn) pseudo regret at the same time, no matter how small the gaps are.

To conclude, by exploiting the stochasticity of the problem and applying the optimism in face of un-
certainty principle, the UCB algorithm achieves a more adaptive and efficient trade-off between ex-
ploration and exploitation, resulting in a regret guarantee that is never worse than the naive Explore-
then-Exploit algorithm or even Exp3 (ignoring logarithmic factors), and is potentially much better
when the suboptimality gaps are not too small.

2 Lower Bounds for MAB

Recall that with full information, learning with K actions using the Hedge algorithm suffers at most
O(

√
n lnK) regret. On the other hand, when learning with partial information, the regret bound

of Exp3 exhibits an extra factor of
√
K, which is quite intuitive since each round we only obtain

1/K fraction of information. In this section, we prove that such increase in the regret is essentially
unavoidable. More specifically, we will argue that in the worst case, the expected regret of any MAB
algorithm is at least Ω(

√
nK), demonstrating a strict gap between learning with full information and

learning with partial information.

The intuition of the lower bound is rather straightforward. For any fixed algorithm, first image
running it in a simple world where losses for all arms are generated independently and uniformly
from {0, 1}. There must exist an arm that is selected no more than n/K times by this algorithm.
Now suppose that the adversary secretly modifies the environment so that the loss of this arm follows
a Bernoulli distribution with parameter 1/2−

√
K/n, which is not distinguishable from the uniform

distribution with only n/K samples based on standard arguments from information theory. Thus,
when run in this new environment, the same algorithm should not be aware of this change and will
still pick this arm not often enough, say no more than n/2 rounds, leading to at least n

2

√
K/n =

Ω(
√
nK) regret.

The question is how to make this argument formal. In particular, how to formally argue that in
the new environment the algorithm’s behavior stays roughly the same. As we will see in the proof
below, this can in fact be related to the KL divergence between two distributions corresponding to
the two environments.
Theorem 2. For any MAB algorithm A, there exists a fixed sequence of loss vectors such that

EA[Regn] = Ω(
√
nK),

where EA[· · ·] denotes the expectation with respect to the randomness of A.

Proof. According to the informal argument mentioned earlier, we create two randomized environ-
ments E and E ′ in the following way (and use E and E′ to denote the expectation in these two
environments respectively). In E , every loss ℓt(a) follows independently a Bernoulli distribution
with parameter 1/2, denoted by Ber(1/2). There must exist a′ ∈ [K] such that E[m(a′)] ≤ n

K

where m(a) =
∑n

t=1 1 {at = a} is the total number of times a is selected. Then, E ′ is constructed
such that the losses of arm a′ follow Ber(1/2 − ϵ) independently for some small ϵ ≤ 1/4 to be
specified later, and every other arms still follow Ber(1/2) independently.

The rest of the proof argues that E′EA[Regn] = Ω(
√
nK), which implies that there exists a fixed

sequence of loss vectors such that EA[Regn] = Ω(
√
nK) and concludes the proof. Further note

that E′EA[Regn] = EAE′[Regn], so it is sufficient to prove that for any deterministic algorithm,
E′[Regn] = Ω(

√
nK). If we denote the observation of the learner at time t by ℓ̃t = ℓt(at), then

a deterministic algorithm selects at via some fixed function of ℓ̃1:t−1 (note that the information of
a1:t−1 is redundant since a1:t−1 are determined by ℓ̃1:t−2 already).

Clearly, in expectation a′ is the best arm in E ′ and

E′[Regn] = E′

[
n∑

t=1

ℓt(at)− min
a∈[K]

n∑
t=1

ℓt(a)

]
≥ E′

[
n∑

t=1

ℓt(at)−
n∑

t=1

ℓt(a
′)

]
= (n− E′ [m(a′)])ϵ.

3

We next show that E′ [m(a′)] and E [m(a′)] are close, that is, the number of times a′ is selected in
environment E and that in environment E ′ are similar (just as in the previous informal argument).
Indeed, using P and P′ to denote the distributions of the observation sequence ℓ̃1:n in E and E ′

respectively, we have

E′ [m(a′)]− E [m(a′)] =
∑

ℓ̃1:n∈[0,1]n

m(a′)
(
P′(ℓ̃1:n)− P(ℓ̃1:n)

)
≤ n

∑
ℓ̃1:n∈[0,1]n

∣∣∣P′(ℓ̃1:n)− P(ℓ̃1:n)
∣∣∣

= n ∥P′ − P∥1 ≤ n
√

2KL(P ∥ P′),

where the last step is by the Pinsker’s inequality. To calculate KL(P ∥ P′), we apply a handy
divergence decomposition lemma (Lemma 3, included after this proof):

KL(P ∥ P′) = E [m(a′)] · KL (Ber(1/2) ∥ Ber(1/2− ϵ))

=
E [m(a′)]

2

(
ln

1/2

1/2 + ϵ
+ ln

1/2

1/2− ϵ

)
=

E [m(a′)]

2
ln

(
1

1− 4ϵ2

)
≤ 8E [m(a′)] ϵ2,

where in the last step we use the fact ln
(

1
1−x

)
≤ 4x for any 0 ≤ x ≤ 1

2 . We have thus shown

E′ [m(a′)] ≤ E [m(a′)] + 4nϵ
√

E [m(a′)] ≤ n

K
+ 4nϵ

√
n

K

(recall that a′ is selected such that E [m(a′)] ≤ n/K) and thus

E′[Regn] ≥ n

(
1− 1

K
− 4ϵ

√
n

K

)
ϵ ≥ n

(
1

2
− 4ϵ

√
n

K

)
ϵ.

Setting ϵ = 1
16

√
K
n (to maximize the lower bound above) shows E′[Regn] = Ω(

√
nK), finishing

the proof.

The following divergence decomposition lemma is very powerful and is used extensively in proving
lower bounds.

Lemma 3 (Divergence decomposition). Let E and E ′ be two stochastic MAB environments where
for each a, the losses of arm a are i.i.d. samples of Pa and P ′

a respectively. Let ℓ̃t = ℓt(at) be
the observation of a deterministic learner at time t and P and P′ be the distributions of ℓ̃1:n for
environments E and E ′ respectively. Then

KL(P ∥ P′) =

K∑
a=1

E [m(a)]KL(Pa ∥ P ′
a),

where m(a) is the total number of times a is selected in E .

Proof. For simplicity we consider the case when P1:K and P ′
1:K are discrete distributions (the gen-

eral case can be proven similarly). By definition and direct calculation we have

KL(P ∥ P′) =
∑
ℓ̃1:n

P(ℓ̃1:n) ln

(
P(ℓ̃1:n)
P′(ℓ̃1:n)

)
=
∑
ℓ̃1:n

P(ℓ̃1:n) ln

(∏n
t=1 P(ℓ̃t|ℓ̃1:t−1)∏n
t=1 P′(ℓ̃t|ℓ̃1:t−1)

)

=

n∑
t=1

∑
ℓ̃1:n

P(ℓ̃1:n) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

4

=

n∑
t=1

∑
ℓ̃1:t

 ∑
ℓ̃t+1:n

P(ℓ̃t+1:n|ℓ̃1:t)

P(ℓ̃1:t) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

=

n∑
t=1

∑
ℓ̃1:t

P(ℓ̃1:t) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

=

K∑
a=1

n∑
t=1

∑
ℓ̃1:t:at=a

P(ℓ̃1:t) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

=

K∑
a=1

T∑
t=1

∑
ℓ̃1:t−1:at=a

P(ℓ̃1:t−1)
∑
ℓ̃t

P(ℓ̃t|ℓ̃1:t−1) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

=

K∑
a=1

T∑
t=1

P(at = a)KL(Pa ∥ P ′
a) =

K∑
a=1

E [m(a)]KL(Pa ∥ P ′
a),

which completes the proof.

3 Partial Monitoring

For the final topic of this course, we focus on a problem called Partial Monitoring, which allows
an extremely general feedback model and greatly generalizes MAB. Indeed, while in MAB the
learner observes exactly the loss she suffers, in many other situations the learner only gets to observe
information indirectly related to her actual loss. As we will see soon, partial monitoring can be used
to capture such more challenging problems.

Specifically, a (finite) partial monitoring problem is defined by a loss matrix ℓ ∈ [0, 1]K×d and a
feedback matrix Φ ∈ ΣK×d where K is the number of actions for the learner, d is the number
of outcomes for the environment, and Σ is an arbitrary set of alphabets containing all possible
observations for the learner. Both ℓ and Φ are known to the learner. For simplicity, ahead of time, the
environment decides n outcomes z1, . . . , zn ∈ [d] ≜ {1, . . . , d} (hence an oblivious environment).
Then the learning protocol proceeds in n rounds. For each round t = 1, . . . , n, the learner selects
an action at ∈ [K], suffers loss ℓ(at, zt), and importantly, only observes Φ(at, zt). The goal of the
learner is as usual to minimize regret against the best fixed action in hindsight:

Regn =

n∑
t=1

ℓ(at, zt)−
n∑

t=1

ℓ(a⋆, zt) where a⋆ ∈ argmin
a∈[K]

n∑
t=1

ℓ(a, zt)

The flexibility of having a general feedback matrix Φ allows us to capture many different problems
under this framework. Below are a few examples.

Full-information problems. A natural way to encode a learning problem with full information is
to set Φ(a, z) = z for all a ∈ [K] and z ∈ [d]. That is, no matter what the learner chooses, the actual
outcome is observed, which is basically the general online learning protocol we focused on for most
of the previous lectures (except that here, for simplicity, both the action space and the outcome space
are finite). Note that, however, this is not the only way to encode a full-information problem. In
fact, as long as each row of Φ consists of d distinct elements, then it essentially captures the exact
same full-information problem, because clearly the learner can still infer the outcome just based on
the observation Φ(a, z).

Bandit problems. Generalizing the well-known multi-armed bandits problem, the term “bandit
feedback/information” usually refers to any problems where the learner observes exactly the loss
she suffers. These problems can be modeled as partial monitoring by simply setting Φ = ℓ. Take
MAB as an example. Assuming losses are all binary (which is in fact without loss of generality),
we can set d = 2K and let the columns of ℓ (which is also Φ) represent all the 2K possible binary
vectors in K dimension.

5

Apple tasting. Apple tasting is one of the simplest problems that are neither full-information nor
bandit-information. Imagine a task of classifying a sequence of apples as “good for sale” or “rotten”.
The loss is 0 if the prediction is correct or 1 otherwise (as in typical binary classification problems).
However, only when we predict “rotten” can we actually open the apple and see if it is indeed rotten,
otherwise it is sent for sale and we will never know if we predict correctly or not. This can be
modeled as partial monitoring by taking

ℓ =

(
0 1
1 0

)
and Φ =

(
⊥ ⊥
G R

)
,

where the first (or second) row corresponds to predicting “good for sale” (or “rotten”), and the first
(or second) column corresponds to the apple being actually good (or rotten). An observation from
the first row of Φ gives no information at all on the actual outcome, while an observation from the
second row reveals everything. Note that there are again many other different ways to represent Φ

(for example, it can be encoded as
(
0 0
0 1

)
).

Label efficient learning. Label efficient learning refers to a broad class of problems where query-
ing the true label/outcome is costly and the learner needs to trade-off this cost with information.
Consider the following very simple example of classifying emails as spam or not. The spam detec-
tor usually does not receive feedback from the users, but in case a very hard instance appears it can
choose to ask the user explicitly for answer. Clearly the detector should avoid doing this too often,
and to ensure this we can assign a constant loss c ∈ (0, 1) for each query from the user. Therefore,
we can model the problem as partial monitoring by taking

ℓ =

(
0 1
1 0
c c

)
and Φ =

(⊥ ⊥
⊥ ⊥
, /

)
, (3)

where the last row corresponds to querying the user, which is the only action that reveals the true
outcome, but on the other hand incurs loss c no matter what the outcome is.

Dynamic pricing. As the last example, consider a vendor trying to dynamically adjust the price
of a product with the goal of maximizing revenue. Specifically, each day the vendor first decides
a price at, say either 1, 2, . . ., or K dollars, then a costumer comes with a secrete acceptable price
zt in mind, also in [K] for simplicity (so d = K). The costumer purchases the product if and only
if at ≤ zt, in which case the loss of the vendor is zt − at, the extra money she would have been
able to earn should the product was priced higher at zt. Otherwise, no transaction happens and the
vendor pays for some constant loss c > 0 (for storage fee for example). Importantly, the vendor
only observes binary feedback: whether the transaction happens or not, and in particular, she does
not know the actual loss she suffers if a transaction happens. To model this as partial monitoring,
we can take

ℓ =


0 1 2 · · · K − 1
c 0 1 · · · K − 2
c c 0 · · · K − 3
...

...
...

. . .
...

c c c · · · 0

 and Φ =


✓ ✓ ✓ · · · ✓
✗ ✓ ✓ · · · ✓
✗ ✗ ✓ · · · ✓
...

...
...

. . .
...

✗ ✗ ✗ · · · ✓

 .

4 Classification Theorem

By now you should be convinced that partial monitoring is for sure general enough to capture many
problems, but is it too general to be meaningful/solvable? Indeed, clearly there are examples where
sublinear regret is impossible, such as

ℓ =

(
0 1
1 0

)
and Φ =

(
⊥ ⊥
⊥ ⊥

)
, (4)

because essentially the learner receives no feedback at all and cannot figure out the better action. On
the other hand, there are also trivial problems such as

ℓ =

(
0 0
1 1

)
and Φ =

(
⊥ ⊥
⊥ ⊥

)
, (5)

6

where even though the learner receives no feedback at all, she can ensure exactly 0 regret by always
picking the first action (since it is always better than the second one no matter what the outcome
is). Furthermore, we have also discussed that for full/bandit-information problems, by applying
Hedge/Exp3 we can achieve O(

√
n) regret, which is optimal.

So based on these observations we know that there are different kinds of partial monitoring problems
with different minimax regret bounds. A somewhat surprising result is that there are exactly four
different kinds of such problems — we have seen three of them, with minimax regret 0, Θ(

√
n), and

Θ(n), and it turns out there is exactly one more class of problems with minimax regret Θ(n2/3). This
result, known as the classification theorem, is our focus for the rest of the discussion. To formally
introduce it, we need a couple of concepts (examples are deferred to the end of this section).

Cell decomposition First, let’s consider when an action can be optimal. Note that the benchmark
we want to compare with in the regret definition is

min
a∈[K]

n∑
t=1

ℓ(a, zt) = n min
a∈[K]

⟨ℓa, u⟩

where we use ℓa to denote the a-th row of ℓ and u = 1
n

∑n
t=1 ezt ∈ ∆(d) to denote the outcome

frequency distribution (e1, . . . , ed are standard basis vectors). The cell associated with an action a
is then defined as the set of all frequency distributions where a is optimal:

Ca =

{
u ∈ ∆(d) : a ∈ argmin

a⋆∈[K]

⟨ℓa⋆ , u⟩

}
.

All the cells C1, . . . , CK constitute a cell decomposition of ∆(d). An action a is called

• dominated, if Ca = ∅ (so a is never optimal);
• degenerate, if there exists a different action b such that ∅ ≠ Ca ⊊ Cb (so a is never uniquely

optimal);
• Pareto-optimal, if it is neither dominated nor degenerate;
• duplicate, if there exists a different action a′ such that ℓa = ℓb (or equivalently Ca = Cb).

Note that none of the dominated, degenerate, or duplicate actions can be simply ignored, because
playing them might provide useful feedback. However, for simplicity, we always assume that there
is no degenerate or duplicate actions.1

Note that Ca is a (d − 1)-dimensional polytope if a is Pareto-optimal. Two Pareto-optimal actions
a and b are neighbors if Ca ∩ Cb is of (d − 2) dimension. The neighborhood action set of two
neighboring actions a and b is generally defined as Nab = {k ∈ [K] : Ca ∩ Cb ⊆ Ck}. However,
under our simplifying assumptions (that there are no degenerate or duplicate actions), Nab is simply
{a, b}.

Signal Matrices The next concepts are related to the feedback matrix Φ (note that all concepts
above are only related to the loss matrix ℓ). As we have seen already, there are many equivalent
ways to represent the feedback matrix Φ, and the actual symbol of the feedback is unimportant.
In fact, all it matters is that after taking a certain action, which outcomes would lead to the same
feedback. To this end, we rename the alphabets in Σ as 1, . . . , |Σ| (in an arbitrary manner) and let
the signal matrix Sa ∈ {0, 1}|Σ|×d associated with an action a be such that Sa(i, z) = 1 if and only
if Φ(a, z) = i.

Clearly, each column of Sa has exactly one 1. Also, Sa has at most d rows that are not all-zero
vectors. If Sa has exactly d such non-zero rows, then picking action a completely reveals the true
outcome; otherwise, picking action a might lead to ambiguous feedback. Moreover, note that if the
environment chooses an outcome from a distribution u ∈ ∆(d), then the distribution of the learner’s
observation after picking action a can be conveniently written as Sau.

Finally, for any subset of actions N ⊆ [K], we let SN ∈ {0, 1}(|N ||Σ|)×d be the matrix by stacking
signal matrices Sa for all a ∈ N .

1The existence of such actions makes the discussion more involved but does not change the main results.

7

Observability Now we are ready to define the key concept of observability. A pair of neighboring
actions a and b is globally observable if ℓa − ℓb ∈ rowspace(S[K]), which is equivalent to either of
the following two statements:

• there exists vab ∈ RK|Σ| such that ℓa − ℓb = v⊤abS[K];

• there exists a function vab : [K]× Σ → R such that

ℓ(a, z)− ℓ(b, z) =
∑

k∈[K]

vab(k,Φ(k, z)), ∀z ∈ [d]. (6)

Each of these equivalent statements is useful in different ways, but Equation (6) is probably the most
intuitive one. Roughly speaking, it says that we can always estimate the loss difference between
action a and b, no matter what the outcome is. Indeed, suppose that at time t the learner selects an
action at according to a fully supported distribution pt ∈ ∆(K), then clearly vab(at,Φ(at,zt))

pt(at)
is an

unbiased estimator of ℓ(a, zt)− ℓ(b, zt), regardless what zt is.

Similarly, a pair of neighboring actions a and b is locally observable if ℓa − ℓb ∈ rowspace(SNab
)

(which is a stronger condition compared to global observability). In other words, Equation (6) holds
with vab(k, ·) = 0 for all k /∈ Nab, and thus we can estimate the loss difference between a and b by
sampling from a distribution that is only supported on a and b.

Finally, a partial monitoring problem is called globally (or locally) observable if every pair of neigh-
boring actions is globally (or locally) observable. Note that if a problem is globally observable, then
we also have ℓa − ℓb ∈ rowspace(S[K]) for any pair of Pareto-optimal actions a and b (not just
neighboring pair, since we can find a sequence of neighboring pairs connecting a and b). We are
now ready to state the classification theorem.

Theorem 3 (Classification Theorem). The minimax regret of a partial monitoring problem G is
(ignoring dependence on all parameters but n):

inf
learner

max
z1:n

E [Regn] =


0, if G has only one Pareto-optimal action;
Θ(

√
n), else if G is locally observable;

Θ(n
2
3), else if G is globally observable;

Θ(n), else.

The proof of the classification theorem will be the focus of the next lecture. Here, with the theorem
and all the related concepts in mind, we go over each example mentioned in the last section again.

Full-information problems. Since for a full-information problem we can set Φ(a, z) = z for all
a ∈ [K] and z ∈ [d], we have that the signal matrix Sa is exactly the identity matrix for any a, and
thus any vector in d dimension is in the full-rank row space of Sa. Therefore, regardless the loss
matrix, any full-information problem is locally-observable, and thus O(

√
n) regret is achievable (as

we already know since Hedge can be applied).

Bandit problems. Bandit problems with ℓ = Φ are also always locally-observable regardless
the loss matrix. To see this, it is more convenient to use Equation (6). Indeed, we can set
vab(a,Φ(a, z)) = Φ(a, z) = ℓ(a, z), vab(b,Φ(b, z)) = −Φ(b, z) = −ℓ(b, z), and vab(k, ·) = 0
for all other actions k, so that Equation (6) holds clearly.

Apple tasting. For apple tasting, we have C1 = {u ∈ ∆(2) : u1 ≥ u2} and C2 =
{u ∈ ∆(2) : u1 ≤ u2}, and both actions are Pareto-optimal and neighbors. Since action 2 reveals
all information, the rows of S2 span R2 and thus ℓ1 − ℓ2 ∈ rowspace(S2). Therefore, apple tasting
is locally observable with Θ(

√
n) minimax regret.

Label efficient learning. For the simple label efficient learning instance defined in Equation (3),
the observability turns out to depend on the value of the query cost c. If c < 1/2, then C1 =
{u ∈ ∆(2) : u2 ≤ c}, C2 = {u ∈ ∆(2) : u1 ≤ c}, and C3 = {u ∈ ∆(2) : c ≤ min {u1, u2}} (try
to draw an illustrative figure to help understand this). All actions are Pareto-optimal, and there
are two neighboring pairs: actions 1 and 3, and actions 2 and 3. Similarly to apple tasting, since

8

action 3 reveals all information, the rows of S3 span R2, and thus ℓ1 − ℓ3 ∈ rowspace(S3) and
ℓ2 − ℓ3 ∈ rowspace(S3), showing that the two neighboring pairs are both locally observable. The
minimax regret is therefore Θ(

√
n) again.

If c is exactly 1/2, then C3 has exactly one point (with u1 = u2 = 1/2) and is contained in C1 and
C2. So action 3 is degenerate, and this case is beyond the scope of this lecture. Finally, if c > 1/2,
then C3 = ∅ and action 3 is dominated. Actions 1 and 2 are still globally observable (again because
ℓ1 − ℓ2 ∈ rowspace(S3)), but they are not locally observable since rowspace(S1) and rowspace(S2)
are both spaces of points with equal coordinates, while ℓ1 − ℓ2 = (−1, 1). This also matches the
intuition: playing only actions 1 and 2 is clearly not enough to estimate their loss difference since
no information is observed. We conclude that in this case the minimax regret is Θ(n

2
3).

Dynamic pricing. For dynamic pricing, it can be verified that regardless of the value of
c > 0, every pair of actions is neighbor and is globally observable. However, only the pairs
(1, 2), (2, 3), (3, 4), . . . are locally observable. Therefore the minimax regret is Θ(n

2
3). In HW4,

you will verify this for the special case of K = 3.

Finally, we point out that the hopeless problem defined by Equation (4) is clearly not globally ob-
servable, so linear regret is unavoidable, and the trivial problem defined by Equation (5) has only
one Pareto-optimal action (action 1), so the minimax regret is 0.

9

	Adaptive Exploration for Stochastic MAB
	Lower Bounds for MAB
	Partial Monitoring
	Classification Theorem

