
Homework 4
Instructor: Haipeng Luo

1. (Two-point Bandit) In Lecture 18, we discussed the challenging Bandit Convex Optimization
problem and a variant of SCRiBLe that obtains O(T 3/4) regret for Lipschitz functions. In this
exercise, you will see that the regret can be improved to O(

√
T ) if we are allowed to query the

function value for just one extra point. This is called the two-point bandit problem. Specifically,
consider Algorithm 1, which is similar to the algorithm we discussed in Lecture 18, except for the
extra query of point w̃′t and a different way of constructing the estimator ĝt.

Algorithm 1: SCRiBLe for Two-point Bandit
Input: parameter δ ∈ (0, 1], learning rate η > 0, and a ν-self-concordant function ψ
for t = 1, . . . , T do

compute wt = argminw∈Ω

∑t−1
τ=1 w

>ĝτ + 1
ηψ(w)

compute Hessian Ht = ∇2ψ(wt) and sample st ∈ Sd uniformly at random

play w̃t = wt + δH
− 1

2
t st, suffer and observe ft(w̃t)

extra step for two-point bandit: query the function value at point w̃′t = wt − δH
− 1

2
t st

construct estimator ĝt = d
2δ (ft(w̃t)− ft(w̃′t))H

1
2
t st

(a) Prove that ĝt is still an unbiased estimator of the gradient ∇f̂t(wt) (recall f̂t(w) =

Eb∼Bd [ft(w + δH
− 1

2
t b)]).

(b) Prove that if ft is L-Lipschitz, that is, for all w,w′ ∈ Ω, |ft(w) − ft(w′)| ≤ L ‖w − w′‖2,
then ‖ĝt‖?wt

≤ dLD, where D = maxw,w′∈Ω ‖w − w′‖2 is the diameter Ω. (Note that this
bound is independent of δ!)

(c) Prove that for sufficiently small δ and an appropriate choice of learning rate η, the expected
regret of Algorithm 1 is Õ

(
dLD

√
νT
)

. (Hint: in Lecture 18 we decomposed the regret into
five terms and analyzed them separately. See which terms need to be bounded differently
here. Also, when setting the learning rate η you can assume that T is large enough, as we did
in Lecture 18.)

2. (Reducing Oracle Calls) In Lecture 19, we discussed FTL and Epsilon-Greedy for the i.i.d.
contextual bandit problem in the full information setting and bandit setting respectively. Both of
these algorithms make (at most) one oracle call per round. In this exercise, we will analyze “lazy
versions” of these algorithms that reduce the number of oracle calls significantly while ensuring the
same regret guarantees.

Recall that in the i.i.d. contextual bandit setting, each (xt, `t) is an i.i.d. sample of an unknown
joint distribution D. The expected loss of a policy π is denoted by ¯̀(π) = E(x,`)∼D[`(π(x))] and
the policy with the smallest expected loss is denoted by π? = argminπ∈Π

¯̀(π). Regret is defined as
RT =

∑T
t=1

(
`t(at)− ¯̀(π?)

)
.

(a) First consider Algorithm 2 for the full information setting, which clearly only makesO(lnT )
oracle calls for T rounds.



Algorithm 2: Lazy FTL
play a1 ∈ [K] uniformly at random for the first round
for k = 0, 1, 2, . . . do

query the oracle once to obtain πk = argminπ∈Π

∑2k

τ=1 `τ (π(xτ ))
for t = 2k + 1, . . . , 2k+1 do

observe xt, play at = πk(xt), and observe `t

Algorithm 3: Explore-then-exploit
Input: an integer T0 between 1 and T
for t = 1, . . . , T0 do

play at ∈ [K] uniformly at random
construct usual importance-weighted estimator ̂̀t

query the oracle once to obtain π̂ = argminπ∈Π

∑T0

τ=1
̂̀
τ (π(xτ ))

for t = T0 + 1, . . . , T do
observe xt and play at = π̂(xt)

(i) Prove that for any T , with probability 1− δ/2 we have

T∑
t=1

`t(at) ≤
T∑
t=1

¯̀(πdlog2 te−1) +O
(√

T ln(1/δ)
)
.

(ii) Prove that with probability 1− δ/2, for all k = 0, 1, . . . , dlog2 T e − 1 we have

¯̀(πk) ≤ ¯̀(π?) +O

(√
ln((lnT )N/δ)

2k

)
.

(iii) Conclude that for any T , with probability 1−δ we haveRT = O
(√

T ln((lnT )N/δ)
)

.

(b) Next consider Algorithm 3 for the bandit setting, which in total only makes one oracle call.

(i) With probability 1− δ/2 we have

¯̀(π̂) ≤ ¯̀(π?) +O

√K ln(N/δ)

T0
+
K ln(N/δ)

T0

 ,

(ii) Conclude that with an appropriate choice of T0, Algorithm 3 ensures that with proba-
bility 1− δ,RT = O

(
T

2
3 (K ln(N/δ))

1
3 +

√
TK ln(N/δ)

)
.
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Algorithm 4: Exp4 with Randomized Policies
Input: learning rate η
for t = 1, . . . , T do

compute Pt ∈ ∆(Π) such that Pt(π) ∝ exp
(
η
∑t−1
τ=1

〈̂̀
τ , π(xτ )

〉)
play at ∼ pt =

∑
π∈Π Pt(π)π(xt)

construct usual importance-weighted estimator ̂̀t
3. (Randomized Policies) In the lectures we only consider deterministic policies for contextual
bandit, that is, each policy is a function from the context space X to [K]. However, it is also easy
to generalize most of the results to the case of randomized policies where each policy is a function
from the context space X to the simplex ∆(K). Exp4 can simply handle this setup as shown in
Algorithm 4. Prove the following regret bound for this algorithm:

E

[
T∑
t=1

`t(at)

]
−min
π∈Π

T∑
t=1

〈`t, π(xt)〉 ≤ 2
√
TM lnN

whereM = maxt
∑K
a=1 maxπ∈Π π(xt)(a), using the optimal choice of η (which for simplicity can

depend on the unknown quantity M ). Further argue that M ≤ min{K,N} such that the bound is
simply O(

√
T min{K,N} lnN).
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