
Theoretical Machine Learning
Lecture 4

Instructor: Haipeng Luo

1 Pseudo-dimension and Fat-shattering Dimension

In the last lecture we discussed how covering number can be used to measure the complexity of
learning a class of real-valued functions, very similar to the role of growth function for classification
problems. Recall that for binary classification we also introduced VC dimension, a combinatorial
parameter of a class that might be easier to figure out and that gives a direct upper bound on the
growth function via Sauer’s lemma. This leads to a natural question: can we also come up with
some combinatorial parameter for a real-valued function class that helps us bound the covering
number directly?

Indeed, such combinatorial parameters exist. The first such one in the literature is the pseudo-
dimension, and it is based on a pretty natural idea of reducing a real-valued function to a binary
classifier by looking at it epigraph. Specifically, a function f : X → [−1,+1] naturally separates
the space X × [−1,+1] into two parts: the part where f(x) ≤ y (which is called the epigraph
of f ) and the part where f(x) > y. Therefore, we can see f as a binary classifier for the space
X × [−1,+1]. Pseudo-dimension of F is simply defined as the VC dimension of this induced class
of binary classifiers:

Pdim(F) = VCdim ({h(x, y) = sign(f(x)− y) | f ∈ F}) .

If we spell out the definition of VC dimension, then Pseudo-dimension is the largest number n such
that there exist n input-output pairs (x1, y1), . . . , (xn, yn) ∈ X×[−1,+1], such that for any labeling
s1, . . . , sn ∈ {−1,+1}, there exists f ∈ F with sign(f(xt)− yt) = st for all t = 1, . . . , n. (Try to
draw a picture for the case X = R to help understand this.)

For example, in the last lecture we discussed the linear class defined by X = Bdq , F ={
fθ(x) = 〈θ, x〉 | θ ∈ Bdp

}
for some p ≥ 1 and q ≥ 1 such that 1/p + 1/q = 1. To see how

large the pseudo-dimension is for this class, we need to look at the VC dimension of the class{
h(x, y) = sign(〈θ, x〉 − y) | θ ∈ Bdp

}
. This is very similar to the class of linear classifiers we dis-

cussed in Lecture 2 (and HW 1), and it is not hard to verify that the VC dimension is exactly d.
Therefore, the pseudo-dimension of F is d.

A finite pseudo-dimension turns out to be sufficient for learning. Indeed, one can show an ana-
logue of Sauer’s lemma which says that the log α-covering number lnN1(F|x1:n

, α) is of order
Pdim(F) ln

(
1
α

)
(ignoring some log factors). We will not prove this fact, but using this bound with

Theorem 2 of Lecture 3 directly gives Riid(F) = O(
√

Pdim(F)(lnn)/n). Also note that for the
linear class, this gives almost the same bound as what we proved last time.

However, it turns out that finite pseudo-dimension is not necessary for learning. To see this, we
examine the class of all non-decreasing functions again. The claim is that while this class is learn-
able (as we proved last time), it actually has infinite pseudo-dimension, which implies that pseudo-
dimension is not the “right” complexity measure. Indeed, for any n, consider the input-output pairs
(0, 0/n), (1, 1/n), (2, 2/n), . . .. For any labeling s1, . . . , sn ∈ {−1,+1}, we can always find a non-
decreasing function that passes through the points (0, 0/n+s1ε), (1, 1/n+s2ε), (2, 2/n+s3ε), . . .,
as long as ε is in (0, 1

2n ], and it is clear that such a function satisfies sign(f(xt) − yt) = st for all



t = 1, . . . , n. This shows that the induced binary classifier class can shatter this kind of training set
for any n, and thus the pseudo-dimension is infinity.

If we compare the definition of pseudo-dimension and covering number, what is missing for pseudo-
dimension is the “scale” α. Intuitively, we also want to come up with a combinatorial parameter in
terms of some scale α, such that it becomes smaller when the scale is larger. One way to do this is
to require the induced binary classifier class to not only predict correctly the labels, but also predict
correctly with a certain confidence or margin. This leads to the concept of fat-shattering. We say
that a class F ⊂ [−1,+1]X α-shatters a set x1, . . . , xn ∈ X , if there exist y1, . . . , yn ∈ [−1,+1]
(called the witness to shattering), such that for any labeling s1, . . . , sn ∈ {−1,+1}, there exists
f ∈ F with st(f(xt) − yt) ≥ α/2 for all t = 1, . . . , n. The condition st(f(xt) − yt) ≥ α/2
exactly corresponds to predicting the label st correctly with margin α/2. With this concept, the
fat-shattering dimension of F at scale α is defined as the size of the largest α-shattered set:

fat(F , α) = max {n | there exists a set x1:n α-shattered by F} .
Clearly, fat(F , α) is decreasing in α — if F α-shatters a set, then it must α′-shatters the same set
for any α′ < α by definition. It is also clear that when α goes to zero, fat-shattering dimension just
becomes pseudo-dimension.

Coming back to the example of the class of all non-decreasing functions, we see that in the previous
construction of the shattered set, the margin is only ε ∈ (0, 1

2n ], which becomes smaller and smaller
as we increase n. So if we require the margin to be at least α/2 for some α, then the construction
will fail for n larger than 1/α. Indeed, one can prove that the fat-shattering dimension is exactly of
order 1/α.
Proposition 1. If X = R, Y = [−1,+1], and F is the set of all non-decreasing functions, then
fat(F , α) ≤ 4

α for any α ≤ 4.

Proof. Suppose x1 ≤ · · · ≤ n is α-shattered by F with witness y1 ≤ · · · ≤ yn. Let st = +1 for
every odd t and st = −1 for every even t, and f ∈ F be the corresponding function that predicts
these labels correctly with margin α/2. Then by the fact that f is non-decreasing, for every odd t
we must have

yt+1 − yt ≥ yt+1 − f(xt+1) + f(xt)− yt ≥ st+1(f(xt+1)− yt+1) + st(f(xt)− yt) ≥ α.
Since all yt’s are in [−1,+1], we conclude that n must not be larger than 4/α, finishing the proof.

So how is the fat-shattering dimension connected to the covering number? It turns out there is also
a similar analogue to Sauer’s lemma, which we state below without going into the proof.
Theorem 1. For any F ⊂ [−1,+1]X and α ∈ (0, 1), we have for any inputs x1:n,

lnN2(F|x1:n
, α) = O

(
fat(F , cα) ln

(
1

α

))
for some absolute constant c > 0.

The bound is tighter than the one for pseudo-dimension since fat(F , cα) ≤ Pdim(F). Applying
Dudley integral entropy further gives us a bound on the Rademacher complexity. For example,
applying it to the class of non-decreasing functions gives the following:
Proposition 2. If X = R, Y = [−1,+1], and F is the set of all non-decreasing functions, then
Riid(F) = O(

√
1/n).

Proof. We apply Dudley integral entropy with lnN2(F|x1:n , α) = O
(

1
α ln

(
1
α

))
= O

(
1

α3/2

)
:

Riid(F) = O
(

inf
α

(
α+

1√
n

∫ 1

α

dδ

δ3/4

))
= O

(
1√
n

)
.

Compared to the bound Riid(F) = O(
√

(lnn)/n) we obtained in the last lecture via a bound
N∞(F|x1:n , α) ≤ (n + 1)

1
α on the `∞ covering number, here we further improve it (removing the

lnn factor) by using a direct bound on the `2 covering number via fat-shattering dimension. This
shows the advantage of going for the fat-shattering dimension directly.

2



Summary. To summarize, for real-valued function class we have obtained a sequence of upper
bounds on the value of the statistical learning game:

V iid(F , n) ≤ sup
P

(
E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

`(f, zt)

)])
(using ERM)

≤ 2 sup
P
Riid(`(F)) (symmetrization)

≤ 2G sup
P
Riid(F) (erasing the loss)

≤ 2G sup
x1:n

min
0≤α≤1

(
4α+

12√
n

∫ 1

α

√
lnN2(F|x1:n

, δ)dδ

)
(Dudley entropy integral)

≤ 2G min
0≤α≤1

O

(
α+

1√
n

∫ 1

α

√
fat(F , cδ) ln

(
1

δ

)
dδ

)
.

As for classification problems, we remark that these upper bounds are also pretty tight, in the sense
that one can show that finite fat-shattering dimension is necessary for the learnability of F . This
concludes all the topics for statistical learning covered in this course (we will come back for more
in the final project though).

2 From Statistical Learning to Online Learning

After developing a rather complete picture for the learnability of statistical learning, next we will
move on to the harder online learning setting and establish a similar theory based on similar but
slightly more advanced techniques. First recall the general setup for online learning, which can be
seen as a sequential game between a learner and the environment. The game proceeds in rounds, and
for each round t = 1, . . . , n, the learner first predicts ŷt ∈ D while the environment chooses zt ∈ Z
simultaneously, then the learner suffers loss `(ŷt, zt) and observes zt. The goal of the learner is to
minimize the regret against some reference class F ⊂ D,

Reg(F , n) =

n∑
t=1

`(ŷt, zt)− inf
f∈F

n∑
t=1

`(f, zt),

and the value of this sequential game can be written as V seq(F , n) = infπ supz1:n E
[

Reg(F,n)
n

]
,

which, as we proved in Lecture 1, is always at least as large as V iid(F , n). F is said to be online
learnable if the value V seq(F , n) goes to 0 as n increases.

Moreover, for an adaptive environment where zt can depend on ŷ1, . . . , ŷt−1, the value can be further
simplified as

V seq(F , n) = x inf
qt∈∆(D)

sup
zt∈Z

Eŷt∼qt}
n

t=1

[
Reg(F , n)

n

]
.

We will focus on adaptive environments (which are harder than oblivious environments) and relax
the value V seq(F , n) step by step following the same roadmap for statistical learning.

2.1 Empirical process with dependent data

Recall that in statistical learning, the very first step to relax the value is by choosing a specific
learning strategy: ERM, then the value can be shown be bounded as the expected supremum of an
empirical process. Is there a similar analogue for online learning?

The first natural attempt is to do ERM at each step: ŷt = argminf∈F
∑t−1
τ=1 `(f, zτ ). This is called

the follow-the-leader approach in online learning, and it turns out that this approach will lead to
linear regret (linear in n) even for very simple problems and is in general not a good algorithm for
online learning. We postpone the proof to the second half of the course that focuses on algorithm
design.

So what other algorithms should we try? Instead of searching for different candidates, we will in
fact take a bolder approach — directly relax V seq(F , n) without constructing an algorithm. This

3



can be done with the help of the celebrated minimax theorem. Specifically, we first randomize the
decisions of the environment:

V seq(F , n) = x inf
qt∈∆(D)

sup
pt∈∆(Z)

Eŷt∼qt,zt∼pt}
n

t=1

[
Reg(F , n)

n

]
.

Under some mild technical conditions which hold for all problems we will discuss, minimax theorem
says that we can in fact swap all the inf and sup above, leading to:

V seq(F , n) = x sup
pt∈∆(Z)

inf
qt∈∆(D)

Eŷt∼qt,zt∼pt}
n

t=1

[
Reg(F , n)

n

]
.

We will not go into the details of these conditions, but will come back to the proof of some version
of the minimax theorem later in this course. Instead, let’s focus on the consequence of applying
minimax theorem above. First, note that we have in some sense swapped the order of the learner
and the environment in this sequential game — at each time t, the environment now first comes up
with a distribution pt over the outcome zt, then the learner, knowing the distribution pt, comes up
with a randomized strategy qt. This is sometimes called the dual game. While seemingly the dual
game is more favorable for the learner (since he/she plays second now) and might have a smaller
value, minimax theorem tells us that in fact the value of the game remains exactly the same! In other
words, which player goes first makes no difference as long as both players behave optimally.

Second, note that in the dual game, randomness is not needed for the learner anymore:

V seq(F , n) = x sup
pt∈∆(Z)

inf
ŷt∈D

Ezt∼pt}
n

t=1

[
Reg(F , n)

n

]
.

This is simply because the best randomized strategy qt is to put all the mass on the worst-case
ŷt ∈ D. Note that, however, randomness is required for the environment now. In order words, we
have also swapped the randomness in some sense.

Finally, we emphasize that even one could come up with the exact optimal strategy for the learner
in the dual game, it provides no clue on how the learner should behave in the original game (at
least not directly), simply because the strategies for these two different games do not even pass
“type-checking” — the one in the dual game requires seeing the strategy of the environment first
before making its own decision, while the one in the original game needs to make the decision first.
Therefore, by going to the dual game, on the one hand we can still argue about the value of the
original game, but on the other hand we have in some sense lost all the algorithmic information for
the learner. (We will see how to address this in a few weeks though.)

So how is looking at the value of the dual game any easier? It turns out that by only one more step
of upper bounding, we can further bound it by the expected supremum of some empirical process
with dependent data. This is summarized in the following theorem.
Theorem 2. The value of the dual game is bounded as

x sup
pt∈∆(Z)

inf
ŷt∈D

Ezt∼pt}
n

t=1

[
Reg(F , n)

n

]

≤ sup
P∈∆(Zn)

E
z1:n∼P

[
sup
f∈F

1

n

n∑
t=1

(
Ez′t∼P(·|z1:t−1) [`(f, z′t)]− `(f, zt)

)]
. (1)

To understand this bound, one should compare it with the very similar bound

V iid(F , n) ≤ sup
P

(
E

[
sup
f∈F

(
L(f)− 1

n

n∑
t=1

`(f, zt)

)])

= sup
P

(
E

z1:n∼Pn

[
sup
f∈F

1

n

n∑
t=1

(
Ez′t∼P [`(f, z′t)]− `(f, zt)

)])
(2)

for statistical learning. The two differences are: 1) while z1, . . . , zn are drawn independently from
the worst-case distribution P in Equation (2), they are drawn from a worst-case joint distribution P

4



in Equation (1) and do not need to be independent; 2) in Equation (2), each summand involves a term
E [`(f, z′t)], which is the expected loss of f under the distribution P and is the same no matter what
t is, while in Equation (1), each summand also involves a term E [`(f, z′t)], but z′t is drawn from the
conditional distribution of P given the past z1:t−1, and thus is different for different t. Finally, we
point out that bound (1) is clearly at least as large as bound (2), since if we restrict P in Equation (1)
to range over product distributions, then the bound becomes exactly the same as Equation (2).

The collection of random variables 1
n

∑n
t=1

(
Ez′t∼P (·|z1:t−1) [`(f, z′t)]− `(f, zt)

)
index by f ∈ F

is called an empirical process with dependent data. Note that the conditional expectation of
Ez′t∼P (·|z1:t−1) [`(f, z′t)] − `(f, zt) given z1:t−1 is clearly 0 for any t, which means each random
variable in this empirical process is in fact the average of a sequence of martingale differences and
should be small for each f . Whether the supremum of these random variables is also reasonably
small will depend on the structure of F .

Proof of Theorem 2. For simplicity we prove the theorem for n = 2. The general case can be proven
by following the exact same idea. When n = 2, the left hand side multiplied by n is simply

sup
p1

inf
ŷ1

Ez1
[
sup
p2

inf
ŷ2

Ez2
[
`(ŷ1, z1) + `(ŷ2, z2)− inf

f∈F
(`(f, z1) + `(f, z2))

]]
.

Paying attention to the dependence of each term, we can rewrite this as (this might look complicated,
but note that every step is equality!)

sup
p1

inf
ŷ1

Ez1
[
`(ŷ1, z1) + sup

p2

inf
ŷ2

Ez2
[
`(ŷ2, z2)− inf

f∈F
(`(f, z1) + `(f, z2))

]]
= sup

p1

(
inf
ŷ1

Ez′1 [`(ŷ1, z
′
1)] + Ez1sup

p2

inf
ŷ2

Ez2
[
`(ŷ2, z2)− inf

f∈F
(`(f, z1) + `(f, z2))

])
= sup

p1

Ez1sup
p2

(
inf
ŷ1

Ez′1 [`(ŷ1, z
′
1)] + inf

ŷ2
Ez2

[
`(ŷ2, z2)− inf

f∈F
(`(f, z1) + `(f, z2))

])
= sup

p1

Ez1sup
p2

(
inf
ŷ1

Ez′1 [`(ŷ1, z
′
1)] + inf

ŷ2
Ez′2 [`(ŷ2, z

′
2)]− Ez2

[
inf
f∈F

(`(f, z1) + `(f, z2))

])
= sup

p1

Ez1sup
p2

Ez2
[
inf
ŷ1

Ez′1 [`(ŷ1, z
′
1)] + inf

ŷ2
Ez′2 [`(ŷ2, z

′
2)]− inf

f∈F
(`(f, z1) + `(f, z2))

]
= sup

p1

Ez1sup
p2

Ez2 sup
f∈F

(
inf
ŷ1

Ez′1 [`(ŷ1, z
′
1)] + inf

ŷ2
Ez′2 [`(ŷ2, z

′
2)]− `(f, z1)− `(f, z2)

)
. (3)

Next we perform the only upper bounding step — since ŷ1 and ŷ2 are from D, a superset of F , we
can replace inf ŷ1 and inf ŷ2 by the particular f from the earlier supf∈F , arriving at

sup
p1

Ez1sup
p2

Ez2 sup
f∈F

(
Ez′1 [`(f, z′1)] + Ez′2 [`(f, z′2)]− `(f, z1)− `(f, z2).

)
Finally, we look at Ez1 supp2∈∆(Z) and note that for each possible draw of z1, there is a corre-
sponding best distribution p2. This is the same as swapping the order and let p2 range over all the
mappings from Z to ∆(Z): supp2:Z→∆(Z) Ez1 and let z2 be drawn from p2(·|z1). This implies that
the final expression is exactly equal to

sup
P∈∆(Z×Z)

E(z1,z2)∼P sup
f∈F

(
Ez′1∼P [`(f, z′1)] + Ez′2∼P(·|z1) [`(f, z′2)]− `(f, z1)− `(f, z2),

)
which finishes the proof.

We remark that Equation (3), which is equal to the value of the dual game, reveals that the optimal
pt in fact does not depend on the decisions of the learner in the dual game (it does depend on all the
previous outcomes z1:t−1 though). This is the key advantage of going to the dual game and it allows
us to simplify the bound greatly.

5



2.2 Symmetrization and sequential Rademacher complexity

Following the roadmap for statistical learning, the next step is to use symmetrization technique to
further relax the expected supremum of the empirical process and arrive at something close to the
Rademacher complexity. There are again connections and importance differences between the two
settings. One key difference is that we will need the concept of a Z-valued tree, which is just a
complete binary tree with some value from Z in each node. More formally, a Z-valued tree z of
depth n consists of n mappings z1, . . . ,zn where zt : {−1,+1}t−1 → Z specifies the values of
the t-th level of the tree. For a path of length n denoted by ε1, . . . , εn ∈ {−1,+1} (think −1 as
left and +1 as right), zt(ε1:t−1) for t = 1, . . . , n specify the n values on this path. For notational
convenience, we will simply write zt(ε1:t−1) as zt(ε) where ε = (ε1, · · · , εn) ∈ {−1,+1}n, even
though zt only takes the first t− 1 entries of ε as inputs.

With this concept, for any class H : Z → R, we define its conditional sequential Rademacher
complexity on a given tree z as

R̂seq(H; z) =
1

n
Eε

[
sup
h∈H

n∑
t=1

εth(zt(ε))

]
where ε = (ε1, · · · , εn) consists of n i.i.d. Rademacher random variables. The (unconditional)
sequential Rademacher complexity ofH is defined as

Rseq(H) = sup
z
R̂seq(H; z) =

1

n
sup
z

Eε

[
sup
h∈H

n∑
t=1

εth(zt(ε))

]
where z ranges over all possible Z-valued trees of depth n. Compared to the counterparts in the
statistical learning setting, the similar part is that we are still basically measuring how well H can
fit random signs, but the key difference is that instead of having n samples z1:n, we now have a
tree of 2n − 1 samples, and the value of the t-th sample depends on the labels for the previous
t − 1 samples ε1:t−1. This corresponds to the sequential aspect of the game — the t-th outcome
can depend on the entire history prior to round t. Also note that for the (unconditional) sequential
Rademacher complexity, we are taking a sup over all the trees, instead of taking an expectation over
some distribution over trees. This amounts to the fact that in online learning, there is no distributional
assumption on the data.

Now we are ready to state the symmetrization result for online learning.

Theorem 3. For any joint distribution P , the expected supremum of an empirical process with
dependent data drawn from P is bounded as

E
z1:n∼P

[
sup
f∈F

1

n

n∑
t=1

(
Ez′t∼P (·|z1:t−1) [`(f, z′t)]− `(f, zt)

)]
≤ 2Rseq(`(F)),

where `(F) = {hf : Z → R | f ∈ F , hf (z) = `(f, z),∀z}.

Proof. We will again take n = 2 as an example to showcase the key idea of the proof, and the
general case can be proven in a similar way. We first rewrite the left hand side (multiplied by n = 2)
as

= Ez1∼P,z2∼P(·|z1) sup
f∈F

(
Ez′1∼P [`(f, z′1)]− `(f, z1) + Ez′2∼P(·|z1) [`(f, z′2)]− `(f, z2)

)
.

Next we pull the expectations out of the sup and use a similar symmetrization trick to arrive at an
upper bound

Ez1,z′1∼P,z2,z′2∼P(·|z1) sup
f∈F

(`(f, z′1)− `(f, z1) + `(f, z′2)− `(f, z2))

= Ez1,z′1∼P,z2,z′2∼P(·|z1),ε2 sup
f∈F

(`(f, z′1)− `(f, z1) + ε2(`(f, z′2)− `(f, z2))) ,

where ε2 is a Rademacher random variable and the last step holds since z2 and z′2 are symmetric.
Now it is tempting to also introduce another Rademacher random variable ε1 for the part involving

6



z1 and z′1. However, directly doing so is in fact incorrect and the last expression is not equal to the
following

Ez1,z′1∼P,z2,z′2∼P(·|z1),ε1:2 sup
f∈F

(ε1(`(f, z′1)− `(f, z1)) + ε2(`(f, z′2)− `(f, z2))) . (×)

The reason is that z1 and z′1 are actually not symmetric, since z2 and z′2 are both drawn from the
conditional distribution given z1, which makes the role of z1 different from that of z′1!

To proceed with symmetrization, we will instead have to first remove this extra dependence on z1

by replacing Ez2,z′2 with the worst case, leading to an upper bound

Ez1,z′1∼P sup
z2,z′2

Eε2 sup
f∈F

(`(f, z′1)− `(f, z1) + ε2(`(f, z′2)− `(f, z2))) .

Now the role of z1 and z′1 are exactly the same and we can symmetrize it as

Ez1,z′1∼PEε1 sup
z2,z′2

Eε2 sup
f∈F

(ε1(`(f, z′1)− `(f, z1)) + ε2(`(f, z′2)− `(f, z2))) ,

which can be further bounded as

sup
z1,z′1

Eε1 sup
z2,z′2

Eε2 sup
f∈F

(ε1(`(f, z′1)− `(f, z1)) + ε2(`(f, z′2)− `(f, z2)))

≤ sup
z1,z′1

Eε1 sup
z2,z′2

Eε2 sup
f∈F

(ε1`(f, z
′
1) + ε2`(f, z

′
2)) + sup

z1,z′1

Eε1 sup
z2,z′2

Eε2 sup
f∈F

(−ε1`(f, z1)− ε2`(f, z2))

= 2 sup
z1

Eε1 sup
z2

Eε2 sup
f∈F

(ε1`(f, z1) + ε2`(f, z2)) .

The final step is similar to the last step of the proof of Theorem 2 — look at Eε1 supz2 and note
that for ε = +1, there is a corresponding z2(+1) that “attains” the sup over z2; and similarly for
ε = −1, there is a corresponding z2(−1) that “attains” the sup. Therefore, it makes no difference if
we swap Eε1 and supz2 , and makes z2 range over all the possible “level 2” of a tree, leading to

2 sup
z

Eε1:2 sup
f∈F

(ε1`(f, z1) + ε2`(f, z2)) .

This finishes the proof.

From the proof, we also see that even if we start from a joint distribution P , because of the step of
relaxing E to sup, we end up having a sup over all the possible trees and lose the information about
P eventually. This is also the reason why sequential Rademacher complexity is defined over the
worst-case tree.

To sum up, we have successfully derived the first two steps of relaxation for the value of an online
learning game, similar to statistical learning:

V seq(F , n) ≤ sup
P∈∆(Zn)

E
z1:n∼P

[
sup
f∈F

1

n

n∑
t=1

(
Ez′t∼P(·|z1:t−1) [`(f, z′t)]− `(f, zt)

)]
≤ 2Rseq(`(F)).

In the next lecture, we will continue this roadmap to further simplify the bound.

7


	Pseudo-dimension and Fat-shattering Dimension
	From Statistical Learning to Online Learning
	Empirical process with dependent data
	Symmetrization and sequential Rademacher complexity


