
Theoretical Machine Learning
Lecture 7

Instructor: Haipeng Luo

1 Classification with Margin

In the last lecture, we discussed how to learn a binary class with finite Littlestone dimension. How-
ever, these classes are quite restricted and the results are very limited. Based on previous discus-
sions, we will instead consider minimizing surrogate of 0-1 loss. For example, consider learning
linear class F =

{
fθ(x) = 〈θ, x〉 | θ ∈ Bdp

}
with hinge loss `(f, (x, y)) = max {1− yf(x), 0}.

As the first step, we again make a realizable assumption: inff∈F
∑T
t=1 max {1− ytf(xt), 0} = 0,

which is equivalent to saying that there exists θ? ∈ Bdp such that yt 〈θ?, xt〉 ≥ 1 holds for all
t = 1, . . . , n. Note that this is an even stronger assumption compared to the realizable assumption
with respect to 0-1 loss, and it posits that the data is not only linearly separable by some hyperplane,
but is separable with margin 1. In fact, a more standard form of this assumption is to normalize the
data xt, leading to a different margin parameter:
Assumption 1 (γ-margin assumption). Data is normalized such that xt ∈ Bdq , and there exists a
constant γ > 0 and a hyperplane parameterized by θ? ∈ Bdp (for some p, q ≥ with 1

p +
1
q = 1) such

that yt 〈θ?, xt〉 ≥ γ holds for all t = 1, . . . , n.

Under this margin assumption, one trivial but inefficient approach is to construct a pointwise γ/2-
cover of F with size N (F , α) ≤ (4

γ + 1)d, and then run Halving over this finite cover. Indeed, by
the covering property there exists θ′ that is the “representative” of θ? and such that

yt 〈θ′, xt〉 = yt 〈θ?, xt〉+ yt 〈θ′ − θ?, xt〉 ≥ γ − γ/2 > 0,

which means that the realizable assumption with 0-1 loss holds for this finite cover and thus Halving
makes at most

O (lnN (F , α)) = O
(
d ln

(
4

γ
+ 1

))
(1)

mistakes.

How do we obtain a more efficient algorithm? In the following we focus on the case p = q = 2 (see
HW3 for the case p = 1 and q =∞). In this case the margin condition yt 〈θ?, xt〉 ≥ γ implies that
the Euclidean distance of each data point xt is at least γ away from the hyperplane θ?. Below we
describe a simple algorithm called Perceptron, which in some case can be seen as the starting point
of neural networks.

Let θ = 0. For t = 1, . . . , n:
1. receive xt and predict st = sign(〈xt, θ〉);
2. receive yt, if yt 6= st, update θ ← θ + ytxt.

Figure 1: Perceptron Algorithm

Note that Perceptron in extremely efficient and it updates itself (the weight vector θ) if and only
if it makes a mistake. The update is simply to add the current misclassified example xt to θ with
the correct direction (determined by yt), so that the corresponding hyperplane rotates towards a
direction that corrects the previous mistake to some degree. Indeed, whenever a mistake is made,
that is yt 〈xt, θ〉 ≤ 0, immediately after the update the algorithm is more likely to be correct on xt
since yt 〈xt, θ + ytxt〉 = yt 〈xt, θ〉 + ‖xt‖22 and ‖xt‖22 ≥ 0. Also note that this is a deterministic
and improper algorithm.

Perceptron is guarantee to make no more than a constant number of mistakes under the margin
assumption, as shown in the following theorem.
Theorem 1. Suppose the γ-margin assumption holds with p = q = 2. Then Perceptron makes at
most 1/γ2 mistakes.

Proof. Denote the weight vector maintained by the algorithm at the beginning of round t as θt,
which means θ1 = 0 and θt+1 = θt + 1 {st 6= yt} ytxt. We first show that the correlation between
θ? and θt is non-decreasing:

〈θt+1, θ
?〉 = 〈θt + 1 {st 6= yt} ytxt, θ?〉 ≥ 〈θt, θ?〉+ 1 {st 6= yt} γ,

where the last step uses the γ-margin assumption. With M =
∑n
t=1 1 {st 6= yt} being the total

number of mistakes we thus have Mγ ≤ 〈θT+1, θ
?〉 ≤ ‖θT+1‖2. Next, we show that the norm of

θT+1 cannot be too large since

‖θt+1‖22 = ‖θt + 1 {st 6= yt} ytxt‖22
= ‖θt‖22 + 21 {st 6= yt} 〈θt, ytxt〉+ 1 {st 6= yt} ‖xt‖22
≤ ‖θt‖22 + 1 {st 6= yt}

and thus ‖θT+1‖2 ≤
√
M . Combining these two facts gives M ≤ 1/γ2.

Even though the mistake bound 1/γ2 has a worse dependence on γ compared to Equation (1), it is on
the other hand completely dimension free, making the algorithm especially preferable for problems
with a huge dimension.

2 Online Convex Optimization

How do we learn in general without the margin assumption? To introduce a solution, we come back
to the general setup where at each time the learner selects ŷt ∈ F (for simplicity we consider proper
learners) and the environment decides zt ∈ Z . The only assumption we will make is that F is a
convex set and the loss function `(·, z) is convex in the first argument for any z ∈ Z . This is also
known as the Online Convex Optimization (OCO) framework.

Many problems fall into this framework or can be re-parameterized to fit into this framework. For
instance, in the previous example of learning a linear class with hinge loss, one can equivalently see
the decision set as F = Bdp and the loss function becomes `(f, (x, y)) = max {1− y 〈f, x〉 , 0},
both of which are convex. Learning a linear class with other common losses (such as logistic loss or
square loss) is the same story. For the finite class example we studied last time, while in the natural
representation F is a discrete finite set (which is of course not convex), one can instead take F ′ to
be the simplex of distributions over the finite elements of F , which is convex, and take the expected
loss Ef∼f ′ [`(f, z)] as the new loss function, which is linear (and thus convex) in f ′.

We first point out that the case when `(f, z) = 〈f, z〉 is a linear function is in some sense universal.
Indeed, by convexity, we can upper bound the regret in the general case as

n∑
t=1

`(ŷt, zt)−
n∑
t=1

`(f?, zt) ≤
n∑
t=1

〈ŷt − f?,∇`(ŷt, zt)〉 , (2)

which becomes the regret for a problem with linear loss function 〈f,∇`(ŷt, zt)〉 at time t. Even
though the loss function now actually depends on the decision of the learner, it turns out that this is
not a problem in this formulation as we will see soon. This reduction ignores the curvature of the

2

original convex loss functions and might not lead to the optimal solutions. For simplicity, however,
we will mainly focus on linear loss functions, denoted as `(f, z) = 〈f, z〉.
There are several general and efficient approaches to solve this problem. Here we discuss one of
them called Follow-the-Regularized-Leader (FTRL), defined as

FTRL: ŷt = argmin
f∈F

t−1∑
τ=1

〈f, zτ 〉+
1

η
ψ(f)

where η > 0 is some learning rate and ψ : F → R is some regularizer that penalizes the learner for
making a decision too close to that of Follow-the-Leader (FTL) (indeed, without the regularization
term this is just FTL). We require that the regularizer is 1-strongly convex with respect to some norm
‖·‖, that is, for any f, f ′ ∈ F :

ψ(f) ≤ ψ(f ′) + 〈∇ψ(f), f − f ′〉 − 1

2
‖f − f ′‖2 . (3)

Strong convexity ensures that ŷt is unique. Moreover, as we will see in the analysis, strong convexity
also ensures stability of the algorithm, which turns out to be essential to ensure small regret. Last but
not least, (strong) convexity of the regularizer also ensures that the optimization required by FTRL
can be efficiently solved by any convex optimization algorithms. Before diving to the analysis, we
first consider two classic examples.

Recovering Gradient Descent. Consider ψ(f) = 1
2 ‖f‖

2
2, which is strongly convex with respect

to the `2 norm (in fact, Equation (3) holds with equality). In this case FTRL becomes

ŷt = argmin
f∈F

t−1∑
τ=1

〈f, zτ 〉+
1

2η
‖f‖22 = argmin

f∈F

∥∥∥∥∥f + η

t−1∑
τ=1

zτ

∥∥∥∥∥
2

2

.

If we let ŷ′t = ŷ′t−1 − ηzt, then ŷt+1 = argminf∈F ‖f − ŷ′t‖
2
2. Note that zt corresponds to the

gradient of the loss function at ŷt in the reduction of Equation (2). Therefore, this is exactly the
(lazy version) of projected gradient descent.

Recovering Hedge. As mentioned earlier, to capture the finite class case we can take F to be a
simplex. In this case consider taking ψ(f) =

∑
i f(i) ln f(i) to be the (negative) entropy, which

is strongly convex with respect to the `1 norm. Indeed, it is not hard to verify that Equation (3)
is equivalent to the well-known Pinsker’s inequality: 1

2 ‖f − f
′‖21 ≤ KL(f ′, f) (proof omitted).

Applying KKT conditions, it is also straightforward to see that the solution of FTRL is exactly
ŷt(i) ∝ exp(−η

∑t−1
τ=1 zτ (i)), which is simply Hedge.

There are many other algorithms that can be formulated as FTRL. The general regret guarantee for
FTRL is shown in the following theorem.
Theorem 2. FTRL with learning rate η and a 1-strongly-convex regularizer ψ (with respect to some
norm ‖·‖) ensures

Reg(F , n) = max
f?∈F

n∑
t=1

〈ŷt − f?, zt〉 ≤
R

η
+ η

n∑
t=1

‖zt‖2? ,

where R = maxf∈F ψ(f)−minf∈F ψ(f) is the range of the regularizer and ‖·‖? is the dual norm

of ‖·‖. If we further have ‖zt‖? ≤ G for all t, then picking η =
√

R
nG2 gives Reg(F , n) ≤ G

√
Rn.

Again, according to the reduction of Equation (2), the condition ‖zt‖? ≤ G exactly corresponds
to a Lipschitz condition of the loss function. This also provides a guidance on how to choose the
regularizer ψ — if the loss function has a small Lipschitz condition with respect to some norm
‖·‖?, then we should choose a regularizer that is strongly convex with respect to the dual norm ‖·‖
to exploit this fact. For example, if the loss function is Lipschitz in `2 norm, then we can choose
ψ(f) = 1

2 ‖f‖
2
2 and apply gradient descent. On the other hand, if the loss function is Lipschitz in `∞

norm, then we can choose ψ to be the (negative) entropy and apply Hedge. Note that in this case,
R = maxf∈F ψ(f) − minf∈F ψ(f) ≤ ln |F|, and Theorem 2 recovers the Hedge regret bound
O(
√
n ln |F|) we proved last time.

3

2.1 Proof of Theorem 2

We make use of two important lemmas. The first one analyzes the regret of an imaginary strategy
called Be-the-Regularized-Leader (BTRL), which predicts ŷt+1 at time t. This is of course not
a valid algorithm since ŷt+1 depends on zt. However, understanding the regret of this imaginary
strategy turns out to be very useful.
Lemma 1 (Be-the-Leader Lemma). FTRL with learning rate η ensures for any f? ∈ F ,

n∑
t=1

〈ŷt+1 − f?, zt〉 ≤
R

η

Proof. Let ht(f) = 〈f, zt〉 for t = 1, . . . , T and h0(f) = 1
ηψ(f). Then FTRL strategy is ŷt =

argminf∈F
∑t−1
τ=0 hτ (f). We then have

n∑
t=0

ht(ŷt+1)− ht(f?) ≤
n∑
t=0

ht(ŷt+1)− ht(ŷn+1) (By the optimality of ŷn+1)

=

n−1∑
t=0

ht(ŷt+1)− ht(ŷn+1) ≤
n−1∑
t=0

ht(ŷt+1)− ht(ŷn) (By the optimality of ŷn)

=

n−2∑
t=0

ht(ŷt+1)− ht(ŷn) ≤ · · · ≤ 0.

Rearranging shows
n∑
t=1

〈ŷt+1 − f?, zt〉 =
n∑
t=1

ht(ŷt+1)−ht(f?) ≤ h0(f
?)−h0(ŷ1) =

ψ(f?)−minf∈F ψ(f)

η
≤ R

η
.

With this lemma, bounding the regret of FTRL simply boils down to analyzing the stability of the
algorithm:

n∑
t=1

〈ŷt − f?, zt〉 =
n∑
t=1

〈ŷt+1 − f?, zt〉+
n∑
t=1

〈ŷt − ŷt+1, zt〉 ≤
R

η
+

n∑
t=1

‖ŷt − ŷt+1‖ ‖zt‖? . (4)

The next lemma then shows that FTRL is indeed stable thanks to the strong convexity of the regu-
larizer.
Lemma 2. FTRL with learning rate η and a 1-strongly-convex regularizer ψ (with respect to norm
‖·‖) ensures ‖ŷt − ŷt+1‖ ≤ η ‖zt‖? for all t = 1, . . . , T .

Proof. Let H(f) =
∑t−1
τ=1 〈f, zτ 〉 +

1
ηψ(f) and H ′(f) =

∑t
τ=1 〈f, zτ 〉 +

1
ηψ(f) so that ŷt =

argminf∈F H(f) and ŷt+1 = argminf∈F H
′(f). By strong convexity and first order optimality,

we have

H(ŷt) ≤ H(ŷt+1) + 〈∇H(ŷt), ŷt − ŷt+1〉 −
1

2η
‖ŷt − ŷt+1‖2 ≤ H(ŷt+1)−

1

2η
‖ŷt − ŷt+1‖2 .

By the same reasoning, we also have

H ′(ŷt+1) ≤ H ′(ŷt) + 〈∇H ′(ŷt+1), ŷt+1 − ŷt〉 −
1

2η
‖ŷt+1 − ŷt‖2 ≤ H ′(ŷt)−

1

2η
‖ŷt+1 − ŷt‖2 .

Combining and rearranging give

‖ŷt − ŷt+1‖2 ≤ η(H(ŷt+1)−H ′(ŷt+1) +H ′(ŷt)−H(ŷt))

= η(〈ŷt, zt〉 − 〈ŷt+1, zt〉)
= η 〈ŷt − ŷt+1, zt〉 ≤ η ‖ŷt − ŷt+1‖ ‖zt‖? .

Further dividing both sides by ‖ŷt − ŷt+1‖ finishes the proof.

Combining this lemma with Equation (4) proves Theorem 2. Also note that the fact that zt might
depend on ŷt (which is indeed the case in the reduction of Equation (2)) does not affect the result,
as mentioned earlier.

4

3 From Value to Algorithms — A General Recipe

By now we have seen quite a few online learning algorithms. One might wonder: how do we come
up with an algorithm, especially when facing a new problem? Is there a general principle or even a
concrete recipe to design algorithms?

To answer this question, we come back to the general setup and its minimax formulation:

V seq(F , n) = x inf
qt∈∆(D)

sup
zt∈Z

Eŷt∼qt}
n

t=1

[
Reg(F , n)

n

]
.

Previously, we derived a sequence of upper bounds on this minimax expression to study learnability,
without having any concrete algorithms. However, in principle, one can be ambiguous and ask for
the exact minimax optimal algorithm, which at time t predicts ŷt drawn from

qt = argmin
qt∈∆(D)

sup
zt∈Z

Eŷt∼qt

[
x inf
qτ∈∆(D)

sup
zτ∈Z

Eŷτ∼qτ}
n

τ=t+1

Reg(F , n)

]

= argmin
qt∈∆(D)

sup
zt∈Z

Eŷt∼qt

[
x inf
qτ∈∆(D)

sup
zτ∈Z

Eŷτ∼qτ}
n

τ=t+1

[
n∑
s=t

`(ŷs, zs)− inf
f∈F

n∑
s=1

`(f, zs)

]]

= argmin
qt∈∆(D)

sup
zt∈Z

(
Eŷt∼qt [`(ŷt, zt)] + x inf

qτ∈∆(D)
sup
zτ∈Z

Eŷτ∼qτ}
n

τ=t+1

[
n∑

s=t+1

`(ŷs, zs)− inf
f∈F

n∑
s=1

`(f, zs)

])
.

To simplify notation, recursively define the (unnormalized) conditional value of the game given the
past decisions z1:t of the environment as

Vn(z1:t) = inf
q∈∆(D)

sup
z∈Z

(Eŷ∼q [`(ŷ, z)] + Vn(z1:t, z))

with Vn(z1:n) = − inf
f∈F

T∑
t=1

`(f, zt).
(5)

In words, Vn(z1:t) is the optimal regret (offset by the loss already suffered) one can achieve against
the worst-case future, given the past t steps. Clearly we have V seq(F , n) = 1

nVn(∅). With this
conditional value, the minimax strategy becomes

qt = argmin
q∈∆(D)

sup
z∈Z

(Eŷ∼q [`(ŷ, z)] + Vn(z1:t−1, z)) .

In principle, finding qt is a dynamic program. For most cases, however, there is no simple closed-
form solution or efficient way to solve it exactly. Instead, we aim for finding an approximate so-
lution. One general way to do so is to search for a relaxation of the conditional value. A relax-
ation Reln is a sequence of functions that map the past decisions of the environment z1:t to a real
value for each t = 1, . . . , n (just like the conditional value Vn). It is called admissible if for any
z1, . . . , zT ∈ Z ,

∀t = 1, . . . , n− 1, Reln(z1:t) ≥ inf
q∈∆(D)

sup
z∈Z

(Eŷ∼q [`(ŷ, z)] + Reln(z1:t, z))

and Reln(z1:n) ≥ − inf
f∈F

T∑
t=1

`(f, zt).
(6)

Comparing Equation (5) and Equation (6), it is clear that Vn(z1:t) ≤ Reln(z1:t) always holds, that
is, admissible relaxation is indeed an upper bound of the conditional value. More importantly, if we
replace the conditional value by the relaxation in the minimax optimal strategy, that is,

qt = argmin
q∈∆(D)

sup
z∈Z

(Eŷ∼q [`(ŷ, z)] + Reln(z1:t−1, z)) , (7)

then the regret of this algorithm is bounded by Reln(∅). In fact, we do not even need to solve
Equation (7) exactly — as long as qt is such that

sup
z∈Z

(Eŷ∼qt [`(ŷ, z)] + Reln(z1:t−1, z)) ≤ Reln(z1:t), (8)

5

the regret is bounded by Reln(∅) (note that the solution of Equation (7) always satisfies the above
by admissibility). To see this, we just need to repeatedly peel off each term in the regret:

E [Reg(F , n)] ≤ E

[
n∑
t=1

`(ŷt, zt) + Reln(z1:n)

]

≤ E

[
n−1∑
t=1

`(ŷt, zt) + sup
z

(Eŷ∼qn [`(ŷ, z)] + Reln(z1:n−1, z))

]

≤ E

[
n−1∑
t=1

`(ŷt, zt) + Reln(z1:n−1)

]
≤ · · · ≤ Reln(∅).

Therefore, as long as we can find an admissible relaxation that is easy to compute and that is
not too large, we have a reasonable algorithm. But how to we find such a good relaxation? In
fact, in some sense we have seen one already while discussing learnability. Recall that the value
of the game is bounded by (twice of) the sequential Rademacher complexity, which after scaling
means Vn(∅) ≤ supz Eε

[
supf∈F 2

∑n
t=1 εt`(f, zt(ε))

]
. We generalize the concept of sequential

Rademacher complexity and define:

Rn(z1:t) = sup
z

Eεt+1:n
sup
f∈F

(
2

n∑
s=t+1

εs`(f, zs−t(εt+1:s−1))−
t∑

s=1

`(f, zs)

)
, (9)

where z ranges over all Z-valued tree with depth n − t, which represents the worst-case future. It
can be shown that sequential Rademacher complexity is indeed an admissible relaxation.
Theorem 3. The generalized sequential Rademacher complexity Equation (9) is an admissible re-
laxation.

The proof is based on the same symmetrization technique we have discussed before. Roughly speak-
ing, the conditional value given z1:t is in terms of the difference between the total future loss of the
learner and the benchmark. The first t terms of the benchmark appear as the second summation in
Equation (9), while the last n − t terms is combined with the future total loss of the learner via
symmetrization to become the first summation of Equation (9). We leave the complete proof as an
exercise.

With this relaxation, we can assert that the strategy defined in Equation (8) is definitely a good
algorithm in terms of having low regret — as mentioned the regret is bounded as Reln(∅) = Rn(∅),
which is exactly the original sequential Rademacher complexity (scaled by n) and is very close
to the value of the game according to previous lectures. However, is there a way to efficiently
compute this relaxation? Unfortunately the answer is usually no, especially due to the part supz .
Nevertheless, this relaxation is already much manageable compared to the conditional value, and
very often, further bounding this relaxation via simple algebra will lead to another relaxation that is
efficiently computable and at the same time small enough. This gives a general “recipe” to design
an online learning algorithm:

1. Start with the sequential Rademacher complexity Equation (9).
2. Derive an upper bound of it to get a relaxation that is easy to compute.
3. Prove that the relaxation is admissible.
4. Derive the final algorithm using Equation (7) or Equation (8).

Figure 2: A general recipe to derive an online learning algorithm

Let’s see a concrete example. Consider the case when the loss function is linear: `(f, z) = 〈f, z〉,
which is representative for convex losses per earlier discussions. Further restrict our attention to
F = Z = Bd2 , the unit `2 ball. Then the generalized sequential Rademacher complexity reduces to

Rn(z1:t) = sup
z

Eεt+1:n sup
f∈Bd2

〈
f, 2

n∑
s=t+1

εszs−t(εt+1:s−1)−
t∑

s=1

zs

〉

6

= sup
z

Eεt+1:n

∥∥∥∥∥2
n∑

s=t+1

εszs−t(εt+1:s−1)−
t∑

s=1

zs

∥∥∥∥∥
2

.

Using Jensen’s equality, we upper bound it as

Rn(z1:t) ≤ sup
z

√√√√Eεt+1:n

∥∥∥∥∥2
n∑

s=t+1

εszs−t(εt+1:s−1)−
t∑

s=1

zs

∥∥∥∥∥
2

2

= sup
z

√√√√4

n∑
s=t+1

‖zs−t(εt+1:s−1)‖22 +

∥∥∥∥∥
t∑

s=1

zs

∥∥∥∥∥
2

2

(all other terms have zero mean)

≤

√√√√4(n− t) +

∥∥∥∥∥
t∑

s=1

zs

∥∥∥∥∥
2

2

,

and take the last (very simple) expression as the relaxation Reln(z1:t). Next we prove that this is
indeed admissible. The second line of Equation (6) holds with equality. To show the first line, it is
enough to consider a proper strategy such that

inf
q∈∆(D)

sup
z∈Z

(Eŷ∼q [`(ŷ, z)] + Reln(z1:t, z)) = inf
ŷ∈Bd2

sup
z∈Bd2

〈ŷ, z〉+
√√√√4(n− t− 1) +

∥∥∥∥∥
t∑

s=1

zs + z

∥∥∥∥∥
2

2


≤ inf
ŷ∈Bd2

sup
z∈Bd2

〈ŷ, z〉+
√√√√4(n− t) +

∥∥∥∥∥
t∑

s=1

zs

∥∥∥∥∥
2

2

+ 2

〈
t∑

s=1

zs, z

〉 .

Note that the optimal ŷ has to be in the same direction as
∑t
s=1 zs, for otherwise, ŷ has some

component that is perpendicular to
∑t
s=1 zs, and the environment can also add a component in the

same direction to increase the term 〈ŷ, z〉, while keeping the rest unchanged. Therefore, we let
ŷ = −α

∑t
s=1 zs for some coefficient α ∈ A = (0, 1/‖

∑t
s=1 zs‖2] (such that ŷ ∈ Bd2) and arrive

at
inf

q∈∆(D)
sup
z∈Z

(Eŷ∼q [`(ŷ, z)] + Reln(z1:t, z))

≤ inf
α∈A

sup
z∈Bd2

−α〈 t∑
s=1

zs, z

〉
+

√√√√4(n− t) +

∥∥∥∥∥
t∑

s=1

zs

∥∥∥∥∥
2

2

+ 2

〈
t∑

s=1

zs, z

〉
≤ inf
α∈A

sup
β∈R

−αβ +

√√√√4(n− t) +

∥∥∥∥∥
t∑

s=1

zs

∥∥∥∥∥
2

2

+ 2β


= inf
α∈A

1

2

 1

α
+ α

4(n− t) +

∥∥∥∥∥
t∑

s=1

zs

∥∥∥∥∥
2

2

 =

√√√√4(n− t) +

∥∥∥∥∥
t∑

s=1

zs

∥∥∥∥∥
2

2

= Rn(z1:t).

This shows that the relaxation is indeed admissible, and in fact also gives an algorithm

ŷt+1 = −αt
t∑

s=1

zs, where αt =
1√

4(n− t) +
∥∥∥∑t

s=1 zs

∥∥∥2

2

,

whose regret is bounded by Reln(∅) = 2
√
n. Note that this is very close to the gradient descent

algorithm discussed in Section 2, but without any explicit projection or learning rate.

This is just one simple example to illustrate the power of the general recipe. Using this framework
one can in fact recover many other algorithms, such as FTRL (and hence Hedge as well), and also
derive others that were not known before. This shows that existing algorithms are not “methods
that just work” — they can in fact all be derived in a principled way, starting from the fundamental
sequential Rademacher complexity.

7

	Classification with Margin
	Online Convex Optimization
	Proof of Theorem 2

	From Value to Algorithms — A General Recipe

