Machine Learning
CSCI 567, Fall 2018
|
|
|
*Schedule is subject to small adjustments.
*Slides will be posted. They are largely based on those from Fall 2017 by Prof. Fei Sha.
Date |
Topics |
Recommended Reading |
08/22 |
Course overview; ML overview; nearest neighbor classification; core ML concepts; typical steps of developing a ML system |
slides
handouts
|
08/29 |
Linear regression; regression with nonlinear basis; regularized regression |
slides
handouts
[MLaPP] 1.4.5, 7.1-7.3, 7.5.1, 7.5.2, 7.5.4, 7.6, 1.4.7, 1.4.8
[ESL] 7.1, 7.2, 7.3, 7.10
|
09/05 |
Linear discriminant analysis; Perceptron; logistic regression |
slides
handouts
[MLaPP] 4.2.1 - 4.2.5, 8.5.1-8.5.4, 1.4.6, 8.1-8.3
[ESL] 4.1-4.2, 4.4
|
09/12 |
Multiclass classification; neural networks |
slides
handouts
[MLaPP] 16.5.1-16.5.6, 28 [ESL] 11.3-11.7 |
09/19 |
Convolutional neural nets; kernel methods |
handouts
[MLaPP] 14.1, 14.2.1-14.2.4, 14.4.1, 14.4.3 [ESL] 5.8, 6.3, 6.7 |
09/26 |
Lagrangian duality; SVM |
slides
handouts
[MLaPP] 14.5.2-14.5.4 [ESL] 12.1-12.3 |
10/03 |
First exam |
|
10/10 |
Decision trees; boosting |
slides
handouts
[MLaPP] 16.4.1-16.4.5, 16.4.8, 16.4.9
[ESL] 16.3
|
10/17 |
Midterm review; clustering; Gaussian mixture models |
slides
handouts
EM_demo
[MLaPP] 3.5, 11.1-11.3, 11.4.1-11.4.4, 11.5 [ESL] 6.6.3, 8.5, 14.3.1-14.3.9,
|
10/24 |
Density estimation; generative models; naive Bayes |
slides
handouts
[MLaPP] 17.1-17.4, 17.5.1-17.5.2
|
10/31 |
Hidden Markov models; dimensionality reduction and visualization; PCA |
slides
handouts
[MLaPP] 10.1, 10.2.1-10.2.3, 10.3-10.5, 12.2 [ESL] 14.5.1
|
11/07 |
Multi-armed bandit; reinforcement learning |
slides
handouts
|
11/14 |
Guest lecture by Dr. Bilal Shaw on "fraud detection in real world" |
|
11/21 |
No class -- Thanksgiving |
|
11/28 |
Second exam |
|
|